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ABSTRACT 
The damping coefficient of a acoustical phonons interacting 
with electrons confined in quantum wires modeled with a 
parabolic potential subjected to an external temperature gradient 
in presence and absence magnetic field is calculated. In quantum 
wire the amplification coefficient is found to be enhanced over 
its bulk value. Results show that in presence magnetic field 
phonon amplification coefficient to be enhanced over its value 
in absence magnetic field. 
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I. INTRODUCTION 
The possibility of fabrication of quantum structures of 
submicron dimensions has, the investigation of 
thermoelectric effects in nanostructures is attracting 
considerable interest [1-8]. The problem of acoustic wave 
amplification by an external temperature gradient  in  
semiconductors has already been considered [9-15]. To 
describe the interaction of phonons with electrons in the 
presence of external temperature gradient, a quantum 
mechanical approach was employed to derive an 
expression for the damping (amplification) coefficient for 
the acoustic wave from which the conditions for the 
phonon instability was obtained. 

In this paper we present a theory for the phonon 
instability in parabolic quantum well wires under a 
temperature gradient and a quantizing magnetic field. 

 
The kinetic equation for the acoustic-phonon 

population is as follows[16],  
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Where, qτ is the acoustic-phonon relaxation 
time assumed to be described by the Landay-Rumer loss, 

0
qN  is the equilibrium phonon distribution function, and 

qγ is the phonon growth rate due to the collision with the  
 

electrons in the temperature gradient which is given by 
[16-17] 
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In Eq.(2) 0
, nkf   is the electron distribution 

function and qω is the frequency of acoustic phonons, k 
represents the wave vector of the electron along the x 
direction. To evaluate Eq.(2), we consider the cases of 
short-and open –circuited samples. For short-circuited 
samples, the electron distribution function in the presence 
of the temperature gradient is, within the relaxation time 
approximation, given by [9,16] 
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Where τthe relaxation time of electrons is, T∇  
is the temperature gradient, and kB is the Boltzmann 
constant. Here we choose the equilibrium electron 
distribution 0

,nkz
f  such that 0

0
,2 Nf nkz
=∑ , where N0 is 

the total number of electrons. For a nondegenerate 
electron gas it can be shown to be 
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the one-dimensional concentration of electrons (electrons 
per cm-1).  

 



 
 

For open –circuited samples, the electron distribution 
function changes into [9,18] 
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where e is the charge of the electron, and ϕ is the 
electrostatic potential. Applying the zero-current 

condition  ∑ =−= ∗ ,0, kf
m
ej nk
h

 to eliminate ϕ∇  

of Eq.(5 ). 
 
 

II.THERMOELECTRIC AMPLIFICATION OF 
PHONONS IN ABSENCE OF MAGNETIC FIELD 

We consider electrons confined in a wire of dimensions 

zyx LLL ,,  such that zx LL , << Lx=L. The confinement 
of electrons in the z direction is modeled with a triangular 
well. This gives rise to electric subbands. We will 
consider electron densities such that only the lowest 
subband with energy 0

zЕ is occupied in the z direction. 

The corresponding eigenfunctions is denoted by )(0 zΨ . 
For confinement in the lateral direction y for a parabolic 
well with frequency ω the one-electron eigenfunctions 
and eigenvalues are given by 
      )()(1)( 0, zeyHLr ikx

nkn Ψ=Ψ    (6) 
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where Hn(y) is a Hermite polynomial, L is the 
length of the wire, ∗m is the conduction band mass and 
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 To evaluate γ we need to know the matrix 
element connecting the initial electron state (n,k) to the 
final state (k′,n′) due to an interaction with a phonon. 
Using the wave function (6), it can easily be seen that  
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Here ( )xLm
n  are the associated Laguerre 

polynomials,  ,222
yqlu ω=  ωω

∗= ml h2 . 
Inserting Eq.(7) into Eq.(2), assuming an energy 

independent relaxation time, and changing the summation 
over kz into an integral one obtains, for qωh < TK B : 

( ) ( )

( )

( )

)8(

1

1
2

2421

2
1exp

2
exp

2
22

222

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−′
+×

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+′++

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′+

∇
+

×

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +′+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′+
−=

∗∗

∗

∗

∗

TK
m

TKq
nnm

nn

b
q

m
Tm
T

TK
nn

TKm
bq

A

B

s

Bzs

kz

BB

z

υω
υ

ω

ω
τ

ωγ

h

hh

hh

 
 
where 

( )
( )[ ]2

213

0

2

23
1

2

!!
1

2

uLe

nnl
u

b
q

LLTK
qnEm

A

nn
n

u

nn
z

nzyB

d

−′−

−−′−∗

×

×
′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

ωδρ
π

,  

( )[ ]
z

k

q
nnm

b
h

ωω −′−
=′

∗

 

 
 

III. THERMOELECTRIC AMPLIFICATION 
PHONONS IN MAGNETIC FIELD 

In the presence of a perpendicular magnetic field ΗII OZ, 
the one-electron eigen-functions and eigen-values are 
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respectively, N is the Landay-level index, k is 
the wave vector in the x direction, 
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Using the wave function (), the square matrix 
element can easily be seen that 
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Here ( )222 ~~

yxb qbql +=ϑ  
 Inserting Eq.() into Eq.(), assuming an 

energy independent relaxation time, and changing the 
summation over k into an integral one obtains, for 

йωh <KBT 
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IV. CONCLUSION 

It follows from Eqs.(8) and (11) that if γ>0 the phonon 
population is amplified, whereas if γ<0 is damped. Of 
course, a net growth of the acoustic phonon population 
(amplification) can only be achieved provided the growth 
rate γ due to electron-phonon collisions is greater than the 
losses τ-1 due to other effects than phonon emission or 
absorption by electrons. It is clear from Eqs.(8)-(11) that, 
the condition for amplification is defined as 
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It is found that the phonon amplification 

coefficients follow the inverse area of the cross-section of 
the wire so that they can be enhanced over their 
correspondent bulk values [16] by decreasing transverse 
dimension of  the quantum wire. For judicious parameters 
of the GaAs/Ga1-xAlxas    parabolic quantum wire it has 
been obtained that   volumeγγ ≥    and  1−≥≥ qH τγγ       

From comparison between (8) and (11) it is seen 
that the coefficient of the thermoelectric phonon 
amplification in the quantum wire in the presence of a 
magnetic field increases. This is associated with that in a 
magnetic field carriers in the quantum wire are more 
heavily localized, because of this phonon carrier 
scattering processes occur more actively. In [19], 
attention was drawn to the effective amplification of the 
electron scattering in the ultra-quantum limit with 
increase in the magnetic field. From (8) and (11) it is seen 
that the coefficient of the thermoelectric phonon 
amplification increases with decreasing wire cross 
section. Therefore a decrease in dimensionality of the 
quantum system, i.e. an increase in the band carrier 

localization, leads to a rise in the coefficient of the 
thermoelectric phonon amplification.    
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