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ABSTRACT 

The new numerical method for analysis of transients in radio 
technical chains with distributed parameters is offered with 
allowance for losses. The new recurrence relations easily 
implemented on a computer have been obtained.   
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I. INTRODUCTION 
Solving the problem of state of parameters distribution in 
radio technical circuits is of great scientific and practical 
importance since at signaling through a circuit, inevitably 
there are transients due to which the signals transmitted to 
a customer are subject to considerable distortion. For this, 
the important problem which is of interest to 
communication engineering is account of losses in a 
circuit for accurate precise estimation of the impulse 
signals’ distortions arising along a transmission line, for 
more correct sampling of the detecting device’s 
parameters, with the purpose of obtaining of a desirable 
waveform. 
  However the said above problem in the 
scientific literature hasn’t been covered enough, those 
results in a lot of difficulties, both at design and at their 
operation. 
  For this purpose use of analytical methods 
causes great mathematical difficulties [1-4].   
In this connection the matters of numerical simulation 
analysis of transients arising in radio technical chains with 
distributed parameters with allowance for losses in a 
circuit, in requirements of wide spread computerization 
into practice of engineering design, now draw the 
increasing attention.  
The transients which occur in radio technical chains with 
distributed parameters, are represented with differential 
equations in partial derivatives, of hyperbolic type 
(telegraph equations) [3,4]. 
Now one of the new effective numerical methods of a 
transient analysis in entities with distributed parameters 
represented with telegraph equations is the numerical 
method [1-4], based on use of a discrete analog of an 
integral equation of convolution. 
  Advantage of the presented numerical method is  

 
that it allows to define the transients arising in entities  
with distributed parameters represented with telegraph 
equations without transition to the domain of sampled  
transforms, and also to realize transition from Laplace  
transform of required functions in the range of original 
functions without finding of radicals of a characteristic  
equation, without expansion of an operator’s wave 
propagation factor and an operator’s wave impedance into 
series, that considerably simplifies mathematical 
calculations and improves accuracy of calculations. 
 

II. BODY OF THE TEXT 
 In the given paper, the further simplification and 
development [1-4], for mathematical simulation analysis 
of transients in radio technical chains with distributed 
parameters with allowance for losses in a circuit is given. 
Let’s consider the process of switching on of the loaded 
radio technical chains with distributed parameters with 
the active pure resistance R2 at the end, to a source of the 
random voltage U0(t) through the lumped resistance R1  
and inductance L1 . 
 The transients which occur in radio technical 
chains with distributed parameters, are represented by 
telegraph equations:  
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 where U = U (x, t) - voltage; i = i (x, t) - current; L, C, R, 
G - resistance, inductance, conductivity and capacity 
between a wire and the ground, attributed to  
a unity of circuit length; l - circuit length. 
  The initial conditions are assumed in the form of: 
U (x, t) t=0 = 0, i (x, t) t=0 = 0 
The boundary conditions have a form of: 
i(x, t)x=0 = iн(t), Uк(t) = R2 iк(t), 
 
Where Uк(t) = U(l, t), iк(t) = i(l, t). 
 
    During solution of the set task at the first stage it is 
necessary to obtain the Laplacian transform for functions  
U (x, t), i (x, t). 
    Using this method for assumed initial and boundary 



conditions, from solution of a system of differential 
equations (1) we shall obtain expressions for the above 
functions in the operator form: 
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wave impedance of a circuit; s - an operator of Laplace 
transformation; Uн(s), Uк(s) - the Laplacian transform of 
functions U (x, t), i (x, t), Uн (t). 
  The second stage in solution of the given 
problem is connected carrying out transition from Laplace 
transform (2), (3) in the domain of original functions.  
  In this connection, in the expressions for 
functions i (x, s), U (x, s) from (2), (3) transferring from 
hyperbolic functions to power functions, we shall obtain: 
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  In the specific case if к4 = 0, α = β. For β = 0, in 
the so-called balanced circuits at which the following 
relation of parameters occurs:  
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  For balanced (β = 0) the coefficient appears 
equal to the same value, as for the circuit without losses.  
  Expression (4), (5) can be presented in the form 
of: 
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к1(s),…..,к13(s) - transfer functions. 
    On the basis of the theorem of convolution, transferring 
from the equations (6), (7) concerning transforms to the 
equations concerning original functions we shall obtain:  
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 where к1(t)…..,к13(t) - known originals of transfer 
functions к1(s),…..,к13(s). 
  Integral equations (8), (9) can be solved 
numerically if to substitute integrals for sums. 
In this connection, using connection by the continuous 
time t and discrete n in the form of t = nT / λ (where T = 
2τ, τ – time of a wave run to one end of distributed 
network; λ - any integer), we make a discrete sampling of 
integral equations (8), (9) for sampled interval T / λ, 
substituting operation of continuous integration by 



summation using a rectangular formula. 
For this instead of (8) and (9) we shall obtain: 
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 where i (n,), U (n,) - values of initial functions 
 i (x, t), U (x, t) in the trellis form; 
 for n < λ  
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for n >λ      
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Expression (10) with account (12) will be: 
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    From this we define the following recurrence relation 
enabling to evaluate function U (n, δ) subsequently: 
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For determining the value of trellis function i (n, δ) 
expression (11) with account (13) will be: 
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From this we define the following recurrence relation 
allowing to evaluate function i (n, δ) sequentially: 
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        An error in estimations connected to value λ. The 
more the sampled number λ is, the less is the difference 
between the characteristics of a the continuous function 
and the corresponding characteristics of the trellis ones. 
 The obtained recurrence relations (16), (17) 
define voltage and current variations at any point of radio 
technical chains with distributed parameters with 
allowance for losses in a circuit. 
 The recurrence relations include unknown 
functions Uн[n], iк[n]. Determination of their values is 
carried out on the following procedure.  
 According to fig. 1, for a starting point of radio 
technical chains with distributed parameters, it is possible 
to represent the following expression in the operator form: 
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 Expression (18) in the discrete form in the 
domain of original functions can be represented in the 
form of: 
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  Further for δ = 0, defining from the recurrence 
relation (17), from the expression for current iн[n] and, 
solving jointly with expression (19), we shall obtain the 
following recurrence relation for voltage Uн [n]: 
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where B [n] - known trellis function. 

  According to boundary conditions, it is possible 
to present the following expression for function Uк (t) in 
the trellis form: 

U[n]=R2ik[n]                                                    (21) 
   

III. CONCLUSION 
Further, determinations of the expression for voltage 
Uк[n] for δ = 0,5 (x = l) from the recurrence relation (16), 
the expression for current iк [n] is determined. Then the 
expression obtained for iк [n] is solved jointly with 
expression (21) and the value of voltage Uк [n] is 
determined. 
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