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ABSTRACT 
In article the data about stationary electric field parameters cal-
culation  as applied to low temperature multi-electrode compos-
ite electric heater complex systems. 
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I. INTRODUCTION 

From the point of view of electric power efficient 
utilization the most efficient way to heat biological and 
technical subjects is the application of the local surface-
spread heating which can be implemented by means of 
the composite electric heaters [1].  

The low temperature multi-electrode composite elec-
tric heaters (LTMCEH) present a complex system trans-
forming electric power into that of the heat one and pro-
viding predetermined temperature on the heater surface in 
accordance with the LTMCEH electro-thermal physical 
parameters. The mentioned above demands the exact cal-
culation of the given parameters with the reference to the 
system of electrodes located in the conductive composite 
material.  

The task rigorous solution can be obtained only as the 
result of calculation of the stationary electric field created 
by the electrode system in the quasi-homogeneous me-
dium. The heater calculation model is taken subject to the 
following boundary conditions: LTMCEH can be consid-
ered to possess lumped parameters as the batch processes 
under the frequency of   f=50 Hz are regarded as quasi-
stationary; the electrode surfaces along the full length can 
be regarded as equipotential subject to the medium low 
specific conductivity; the resistive material perimeter 
boundary can be considered as impenetrable for the elec-
tric field lines; as the electrode and resistive layer length 
is much greater than resistive layer cross-section dimen-
sion and the thickness is infinitesimal, the field between 
the electric heater electrode  can be regarded as in-plane.   

 
II. RESULTS AND DISCUSSION 

The task solution has been implemented by means of 
the of electric field intensity direct determination [2] in 

combination with the conformal method. This method is 
based on the auxiliary function application γ (х, у) ex-
pressing the angle value formed by the in-plane electrical 
field vector at any point of the area at issue with one of 
the axes of the Cartesian coordinate system. The  γ (х, у) 
function is harmonic and satisfying Laplace’s two-
dimensional equation as well as to the first type boundary 
conditions stated subject to the electric and equipotential 
lines orthogonality of the field in the parts where one of 
the condition is desired as follows:  
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The electric field of the LTMCEH axis-simmetric 
systems can be described by means of Laplace’s equation 
in the meridian plane system equal in all the meridian 
planes in the cylindrical coordinates (R, ϕ, z). In case that   
l/R > 1 in the cylindrical coordinate system, the axis of 
which is congruent to the cylinder axis, the electric field 
proves to be in-plane and equal for any z. 

The nonlinear transcendental equations have been de-
rived as the result of insertion of the in-plane calculation 
model and conformal image of the original plane of the 
complex variable Z   on to the plane of the new complex 
variable ζ subject to the necessary congruence of the 
original and image points of the planes. 

The system solution has been implemented numeri-
cally by means of Newton’s discrete method. Jacobi ma-
trix of the function partial derivatives of the system is 
approximated by means of the first differences, in addi-
tion the minimum step of function argument is picked out 
under the criterion of the corresponding difference sig-
nificance cancellation. The definite integrals appearing in 
equation system functions are calculated at each iterating 
by means of Newton-Cotes quadrature formula of the 
eighth order. Simultaneously with calculation of the sub-
sequent values of the non-dimensional parameters аi solu-
tion at each iterating the assessment of error of their de-
termination is implemented. 

The given method has been applied in the electric pa-
rameters calculation of the most frequent LTMCEH sys-
tems : 



- conductivity between two pairs of the coplanar elec-
trodes located in the rectangular cross section conductor 
(No. 1); 

- conductivity between three-electrode systems (No. 2); 
- conductivity of the low temperature composite electric 

heater (LTCEH) systems (No. 3); 
- partial conductivities between the coplanar electrodes 

(No. 4); 
- system conductivity subject to the electrode cross-

section dimension and their bias with respect to each 
other (No. 5); 

- LTCEH surface potential distribution (No. 6); 
- conductivity of the two-electrode axis-symmetric sys-

tem (No. 7); 
-  conductivity of the three-electrode axis-symmetric 

system (No. 8); 
- conductivity of the multi-electrode axis-symmetric sys-

tem (No. 9). 
The calculation models and systems in the image 

plane are presented in Table 1. 
The imaging parameters and exact and approximate 

design formulas are presented in Table 2.
     
 

 
Table 1 

No. Calculation Model System in the Image Plane 
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Table 2 
No. Imaging Parameters Exact and Approximate Designed For-
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III. CONCLUSION 

Thus, determination of the stationary electric field 
parameters is implemented by the desired structural di-
mensions by means of the imaging parameters and exact 
or approximate expression choice. 

The expressions presented illustrate that notwith-
standing the methodical identity they are individual for 
each system type. 

For the purpose of designing LTCEH with the de-
sired parameters the following expressions have been 
derived: the expressions for calculation of the partial con-
ductivity between the electrodes, the expressions for cal-
culation of the conductivity subject to the electrode cross-
section dimension, their bias with respect to each other 
and LTCEH surface potential distribution. 

The derived formulas illustrate that electric heater 
conductivity dependency on the electrode width possesses 
the logarithmic character, the increasing ratio of the con-
ductive layer inner radius to that of the outer one leads to 
the reduction of the non-dimensions conductivities due to 
the constant values of the electrode width ratio to the dif-
ference of the radii mentioned above, and the increase of 
the latter ratio due to the constant ratio of the conductive 
layer radii contributes to increasing of the electric heater 
conductivity. 

The calculation model of the LTCEH complex sys-
tems in combination with the derived complex of the ex-
act and approximate expressions of the stationary electric 

field parameters present the theoretical ground of the en-
gineering design procedure of the electric heaters struc-
tural parameters.    
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