МОДЕЛИРОВАНИЕ И СВОЙСТВА МНОГОКОМПОНЕНТНЫХ МАГНИТНЫХ СИСТЕМ FeS-PbS-M₂S₃ (M = Ga, In)

М.М. АСАДОВ^{1*}, С.Н. МУСТАФАЕВА², У.А. ГАСАНОВА¹, О. М. АЛИЕВ¹, К.И. ЯНУШКЕВИЧ³, С.А. НИКИТОВ⁴

¹Институт катализа и неорганической химии НАНА, Баку, Азербайджан mirasadov@gmail.com

²Институт Физики НАНА, Баку, Азербайджан.

solmust@gmail.com

³Научно-практический научно-исследовательский центр материаловедения НАН Беларуси, ⁴Института радиотехники и электроники имени В.А. Котельникова РАН, Москва, Россия

icic.lab6@yandex.ru

Апробирован способ расчета стандартных термодинамических функций многокомпонентных магнитных фаз. Вычисленные термодинамические характеристики соединений MGa_2S_4 , $M_2Ga_2S_5$ использованы в термодинамическом моделировании магнитных систем FeS–PbS– M_2S_3 (M = Ga, In). Анализированы зависимости проводимости соединений FeGa₂S₄ и NiGa₂S₄ от давления при 300 К. Показано, что с возрастанием давления проводимость увеличивается, а ширина запрещенной зоны уменьшается. Анализирована зависимость $Fe_{1.5}Pb_{5.5}In_{10}S_{22}$ от температуры. Показано, что энергия активации примесного уровня, расположенного в запрещенной зоне $Fe_{1.5}Pb_{5.5}In_{10}S_{22}$ составляет $E_t = 0.19$ эВ.

Ключевые слова: многокомпонентные фазы, термодинамические характеристики, FeS–PbS–M₂S₃ (M = Ga, In), моделирование, зависимость проводимости от температуры и давления. PACS: 75.30.Kz, 75.40.-s, 75.40.Cx

Экспериментальные данные по фазовым равновесиям граничных систем FeS–PbS [1,2], PbS–Ga₂S₃ [3], FeS–Ga₂S₃ [4], PbS–In₂S₃ [5], FeS–In₂S₃ [6] известны. Тогда как сведения об исследовании сплавов в системе FeS–PbS–Ga₂S₃ в литературе не обнаружены. Из фазовых диаграм следует, что в системе FeS–PbS–Ga₂S₃ в граничных разрезах при взаимодействии компонентов образуются соединения состава MGa_2S_4 , $M_2Ga_2S_5$ (M – Fe, Pb). Среди магнитных полупроводников в послединие годы интенсивно изучаются, в частности, соединения NiGa₂S₄, FeGa₂S₄ и Fe₂Ga₂S₅, которые образуются в системах MS–Ga₂S₃ (M – Fe, Ni).

С целью установления стабильных коннод системы FeS–PbS– $In_2S_3(Ga_2S_3)$ учитывали возможные

взаимодействия бинарных и тройных соединений системы. Использовали следующие справочные данные: $\Delta_f H_{298}^0$ изменение стандартной энтальпии образования соединения при 298 К; S_{298}^0 – энтропия вещества при 298 К; $\Delta_f G_{298}^0$ – изменение энергии Гиббса образования соединения при 298 К. Оценили величины $\Delta_f G_{298}^0$ и $\Delta_f H_{298}^0$ ($\Delta_f Z_T^0$) тройных соединений.

Энергию Гиббса и энтальпию образования тройных соединений вычисляли уравнением [7]

$$\Delta_{f} Z_{T,(1-x)A \cdot xB}^{0} \left(298K \right) = \left(1 - x \right) \Delta_{f} Z_{T,A}^{0} + x \Delta_{f} Z_{T,B}^{0} + \Delta_{f}^{ex} Z_{T,m}^{0}$$
(1)

где $\Delta_f Z_{T,A}^0$ – термодинамическая функция первого компонента, $\Delta_f Z^0_{T,B}$ – термодинамическая функция второго компонента, х – мольная доля второго $\Delta_f^{ex} Z_{T,m}^0$ избыточный компонента, вклад, соответствующий минимальному значению термодинамической функции соединения, долей содержащего мольных одного ИЗ X_m компонентов при текущей его концентрации (x).

Уравнение (1) апробировали на оксидных и халькогенидных системах, содержащих серии тройных фаз по типу гомологических рядов. Расчетные величины $\Delta_f Z_{298}^0$ тройных соединений сравнивали с опытными. С целью оценки качества приближения модели (1) и исключения наличия нереальных локальных значений на величину $\sum \left(\Delta_f^{ex} Z_{2981-\text{III}}^{0,\text{exp}} - \Delta_f^{ex} Z_{2981-\text{III}}^{0,cal}\right)^2 = |\Delta|$ для рассматриваемых химических соединений анализировали зависимости $|\Delta| = f(x)$ и согласовали значения $|\Delta|$.

Вычисленные из данных бинарных соединений величины $\Delta_f G^0_{298}$ и $\Delta_f H^0_{298}$ [8] тройных соединений

отличались от опытных данных в среднем на 138 и 102 и 125 и 100 кДж/моль, соответственно. На значение избыточного вклада в основном влияют термодинамические характеристики того компонента, который при данной температуре и составе имеет наименьшую энергию. Экспериментальные данные по граничным разрезам FeS–PbS, FeS–In₂S₃ (Ga₂S₃), PbS–In₂S₃(Ga₂S₃) и результаты термодинамического анализа позволяют представить изотермические сечения в системах FeS–PbS–In₂S₃(Ga₂S₃) при 298 K (рис. 1,2).

Результаты расчетов термодинамических величин тройных соединений представлены в таблице

Таблица

Стандартная энтальпия ($\Delta_f H_{298}^0$, кДж/моль), энергия образования Гиббса ($\Delta_f G_{298}^0$, кДж/моль) и энтропия (S_{298}^0 , Дж/(моль К)) тройных соединений (в кристаллическом состоянии (к)) системы FeS–PbS–In₂S₃(Ga₂S₃), вычисленные нами.

Соединение	$-\Delta_{f} {H}^{0}_{298}$	$-\Delta_f G^0_{298}$	S_{298}^{0}
$FeGa_2S_4(\kappa)$	696 ± 17	731 ± 3	-643.5 ± 0.3
$Fe_2Ga_2S_5(\kappa)$	797 ± 17	832 ± 3	-583.2 ± 0.3
PbGa ₂ S ₄ (κ)	696 ± 17	729 ± 3	-643.5 ± 1.3
$Pb_2Ga_2S_5$ (к)	796±17	828 ± 3	-703.8 ± 1.3
$FeIn_2S_4(\kappa)$	582 ± 34	538 ± 34	224 ± 3
$PbIn_2S_4(\kappa)$	582 ± 34	536 ± 34	255 ± 3
$Pb_{6}In_{10}S_{21}(\kappa)$	602 ± 34	556 ± 34	273 ± 2
$Fe_{1.5}Pb_{5.5}In_{10}S_{22}(\kappa)$	833 ± 34	757 ± 34	334 ± 2

Из температурной зависимости проводимости оценена энергия активации примесной проводимости в Fe_{1.5}Pb_{5.5}In₁₀S₂₂, значение которой составило $E_t = 0.19$ эВ.

Установлено, что с увеличением давления ширина запрещенной зоны $NiGa_2S_4$ и $FeGa_2S_4$ уменьшается. Зависимость ширины запрещенной зоны для изученных образцов можно записать в виде

 $E_{g}(P) = E_{g}(0) - |\gamma|P$. Для NiGa₂S₄ значение $|\gamma|$ составляло -0.014 эВ/ГПа, а для FeGa₂S₄ dE_{g}/dP = -0.011 эВ/ГПа.

Благодарность. Исследования были поддержаны ФРНАР (грант № EİF-BGM-3-BRFTF-2+/2017-15/05/1), ФФИ Республики Беларусь (проект T18Аз-029) и (грант № 5 EİF-BGM-4-RFTF-1/2017).

Рис. 1. Концентрационный треугольник сосуществующих фаз в системе FeS–PbS–In₂S₃ при 298 К. $1 - In_2S_3$ –FeIn₂S₄–PbIn₂S₄; $2 - FeIn_2S_4$ –PbIn₂S₄–FeS; $3 - PbIn_2S_4$ –Fe_{1.5}Pb_{5.5}In₁₀S₂₂–FeS; $4 - Fe_{1.5}Pb_{5.5}In_{10}S_{22}$ –PbIn₂S₄– Pb₆In₁₀S₂₁; 5 – Fe_{1.5}Pb_{5.5}In₁₀S₂₂–Pb₆In₁₀S₂₁–PbS;

 $6 - \text{Fe}_{1.5}\text{Pb}_{5.5}\text{In}_{10}\text{S}_{22} - \text{PbS} - \text{FeS}.$

Рис. 2. Концентрационный треугольник сосуществующих фаз в системе FeS-PbS-Ga₂S₃ при 298 К. $1 - Ga_2S_3$ -FeGa₂S₄-PbGa₂S₄; $2 - FeGa_2S_4$ -PbGa₂S₄-Fe₂Ga₂S₅; $3 - PbGa_2S_4$ -Fe₂Ga₂S₅-FeS; $4 - FeS - PbGa_2S_4$ - Pb₂Ga₂S₅; $5 - FeS - Pb_2Ga_2S_5$ -PbS.

- [1] K. Koike, H. Watanabe, S. Tanaka Thermodynamic Studies of the Molten FeS–PbS and Cu₂S–PbS Systems // J. Society of Materials Engineering for Resources of Japan. 1992. V. 5. № 2. P. 21–28
- [2] *M.A. Williamson, J.G. Edwards* Thermodynamics and vaporization chemistry in the PbS–GaS system // Thermochimica Acta. 1986. V. 107. P. 83–100
- [3] P.A. Chilouet, A. Mazurier, M. Guittard Systeme Ga₂S₃-PbS. Diagram de phase, etude cristallographique // Mat. Res. Bull. 1979. V. 14. № 9. P. 1119-1124
- [4] M-P. Pardo, L. Dogguy-Smiri, J. Flahaut Systeme Ga₂S₃-FeS diagramme de phase etude cristallographique // Mat. Res. Bull. 1981. V. 16. P. 1375-1384
- [5] *M.I. Arriourtua, J. Rius, X. Sblans, J.M. Amigo* The crystal structure of lead (II) indium (III)

chalcogenide: $PbIn_2S_4$, a synthetic phase closely related to the lillianite group // Acta Geologica Hispanica. 1983. V. 18. No 1. P. 67-70

- [6] M. Womes, J. Olivier-Fourcade, J-C. Jumas, F. Aubertin, U. Gonser Characterization of the Single-Phase Region with Spinel Structure in the Ternary System In₂S₃-FeS-FeS₂ // J. Solid State Chem. 1992. V. 97. № 2. P. 249–256
- [7] M.M. Asadov, N.A. Akhmedova Fusion Diagrams in the BiBO₃-YbBO₃ and Bi₄B₂O₉-YbBO₃ Systems // Int. J. Thermophys. 2014. V. 35. № 9-10. P. 1749–1756. DOI 10.1007/s10765-014-1673-6
- [8] В.П. Глушко Термические константы веществ. База данных. URL: http://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html