ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ МОНОГАЛОГЕНОЗАМЕЩЕННЫХ БЕНЗОЛА

С.Т. АЗИЗОВ, О.А. АЛИЕВ

Институт Физики Национальной Академии Наук Азербайджана Азербайджан, г. Баку, AZ 1143, пр. Джавида 131, samir_azizov@mail.ru

В статье приводятся результаты, полученные для концентрированных растворов моногалогенозамещенных бензола в неполярных растворителях. Чтобы проследить влияние разбавления чистой жидкости в неполярном растворителе на характер релаксационного процесса и рассмотреть роль окружения полярных молекул в этом процессе, были выбраны два растворителя.

Ключевые слова: диэлектрическая спектроскопия, диэлектрическая релаксация, диэлектрические свойства растворов хлорбензол – бензол, хлорбензол – н – гексан, бромбензол – бензол, бромбензол – н – гексан, йодбензол – бензол, йодбензол – н – гексан.

PACS: 61.20. – p; 77.22. – d; 77.22. Gm;

ВВЕДЕНИЕ

В полярных жидкостях диэлектрическая наблюдается микроволновом В которая охватывает спектр электромагнитных волн длиной от 30 см до 1 мм диапазона Изучение данного возможность для исследования релаксационных свойств. Интерес к исследуемым жидкостям объясняется их сравнительно простым строением, что позволяет использовать существующие теории для анализа экспериментальных данных. Известно, что в хлорбензоле, йодбензоле и бромбензоле существует небольшое распределение релаксации, которое уменьшается с повышением температуры [2]. Также известно, что для этих же соединений наличие единственного времени релаксации. При этом высокочастотный предел ϵ_{∞} диаграммы Коул - Коула оказывается больше, чем квадрат показателя преломления n², измеренного в инфракрасном диапазоне. Этот факт связан с вероятным существованием дополнительной области поглощения резонансного характера субмиллиметровом диапазоне, что проявляется уже при длинах волн от 7 до 3 мм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Измерены диэлектрические проницаемости ϵ' и диэлектрические потери ϵ'' двойных систем хлорбензол – бензол ($C_6H_5Cl-C_6H_6$), хлорбензол – н – гексан ($C_6H_5Cl-H_6$), бромбензол – бензол ($C_6H_5Br-C_6H_6$), бромбензол – н – гексан ($C_6H_5Br-H_6$), йодбензол – бензол ($C_6H_5J-C_6H_6$), йодбензол – бензол ($C_6H_5J-H_6$), йодбензол – н – гексан ($C_6H_5J-H-C_6H_1$) при длинах волн $\lambda=3,26$ см ($20^\circ C$) и $\lambda=12,80$ см ($20^\circ \div -100^\circ C$), в широких пределах изменения концентрации полярных молекул. Кроме того, была измерена равновесная диэлектрическая проницаемость ϵ_0 тех же систем на частоте 1 Мгц при $20^\circ C$. Данные при $\lambda=12,80$ см получены по методу, описанному в [3],

при $\lambda = 3,26$ см был использован метод [4]. В обоих случаях погрешность не превышала 3%. Значения ϵ_0 , определенные при помощи известного резонансного метода, отклоняются от средних значений не больше, чем на 1%, и удовлетворительно согласуются с имеющимися литературными данными [5,6]. Все исходные соединения подвергались сушке многократной перегонке на ректификационной колонке. В табл. 1 собраны значения ε_0 , ε' , ε'' , высокочастотной диэлектрической проницаемости ε_{∞} , разности между ϵ_{∞} и квадратом оптического показателя преломления n² и макроскопического времени релаксации т. Все данные относятся к 20°C. Через х₂ обозначена концентрация полярного компонента в мольных долях.

Построение приведенных диаграмм Коул-Коула (на рис. 1 дан характерный пример для системы С₆Н₅ J - C₆H₆) показывает, что дисперсия в растворах, так же, как и в чистых жидкостях, описывается единственным временем релаксации при всех изученных концентрациях. Такое поведение отмечается при комнатной более низких И температурах, вплоть до точки затвердевания. Влияние разбавления сказывается лишь значительном возрастании вращательной подвижности полярных молекул, тогда увеличение размеров и асимметрии молекулы сдвигает область дисперсии в сторону более низких частот. Неизменность формы дисперсионной кривой при разбавлении свидетельствует о том, что в данных соединениях влияние диполь-дипольных сил на частотный ход є' и є" носит, по-видимому, второстепенный характер.

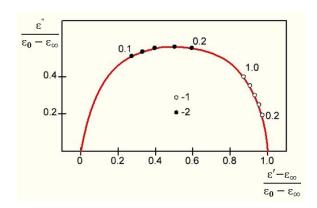
Как следует из табл. 1, расхождение между ϵ_{∞} и n^2 достигает наибольшей величины в случае чистых жидкостей. Ранее отмечалось [2], что это расхождение может быть связано с дополнительным поглощением, непосредственное наблюдение второго в настоящее время затруднительно, ибо требует постановки опыта в миллиметровом и субмиллиметровом диапазонах. Поэтому целесообразно прибегнуть к косвенным

ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ МОНОГАЛОГЕНОЗАМЕЩЕННЫХ БЕНЗОЛА

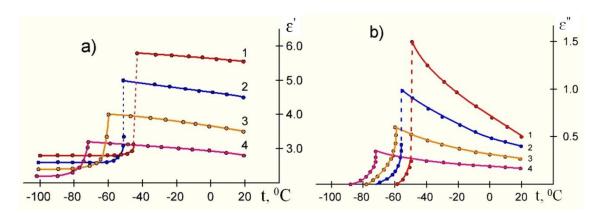
способам выявления природы этого поглощения.

Тот факт, что разность ε_{∞} — n^2 уменьшается с ростом доли неполярного компонента, указывает на ее полярное происхождение. С другой стороны, найденные нами значения диэлектрической проницаемости ε_T' в твердом состоянии, где отсутствует вклад ориентационной поляризации (ε "= 0), также превышают n^2 и незначительно ε_{∞} . Полагая, что различие между ε_T' и ε_{∞} обусловлено температурным изменением плотности, можно утверждать, что разность ε_{∞}' — n^2 создана в основном вкладом инфракрасной поляризации типа Фрелиха [7].

При сравнении релаксационных и вязкостных свойств обнаруживается удовлетворительный параллелизм в случае бензольных растворов, проявляющийся в том, что отношение времени релаксации к вязкости остается в первом приближении постоянным при всех концентрациях. Согласованность нарушается в растворах в н-гексане, где вращательная подвижность полярных молекул оказывается меньше той, которую следовало бы ожидать, исходя из вязкостных данных. Например,


хотя вязкость н-гексана в 3,5 раза меньше вязкости бромбензола, времена релаксации, относящиеся к бесконечному разбавлению и чистой жидкости, различаются только вдвое. При этом следует отметить, что отклонения от пропорциональности проявляются тем сильнее, чем выше концентрация н-гексана.

При измерении температурной зависимости є' и є" (рис. 2) в большинстве случаев фазовый переход совпал с резким уменьшением є' и спадом є" до нуля, диэлектрическая чего проницаемость принимает значение $\varepsilon_{T}^{'}$, не изменяющееся с дальнейшим охлаждением. По мере разбавления скорость перехода уменьшается. Это можно объяснить тем, что в растворе увеличивается доля «свободных» молекул, которые утрачивают подвижность в более широком интервале температур, чем в случае чистой жидкости. Построение зависимости логарифма времени релаксации от обратной абсолютной температуры показывает, что связь между т и Т в жидкой фазе может быть, представлена в виде: т т₀ехр (U/RT), где U – энергия активации. R – газовая постоянная.


Таблица

x ₂	ϵ_0	λ = 12,80 см		$\lambda = 3,26 \text{ cm}$		ϵ_{∞}	ε_{∞} - n^2	10 ¹¹ ·τ, сек
		ε'	ε"	ε'	ε"			
				Хлорбе	нзол – бензол			
0,000	2,28	2,28	_	2,28	_	2,28	0,03	0,87
0,179	3,07	3,06	0,10	2,90	0,31	3,34	0,08	0,95
0,368	3,84	3,81	0,22	3,45	0,64	2,40	0,12	1,05
0,567	4,60	4,54	0,35	3,97	0,98	2,46	0,17	1,14
0,778	5,20	5,12	0,45	4,34	1,25	2,52	0,23	1,19
1,000	5,70	5,60	0,54	4,63	1,47	2,58	0,26	1,25
Хлорбензол – н - гексан								
0,000	1,80	1,89	_	1,89	_	1,89	0,00	0,60
0,243	2,63	2,62	0,06	2,57	0,21	2,03	0,05	0,68
0,461	3,40	3,38	0,14	3,20	0,46	2,16	0,10	0,77
0,658	4,15	4,12	0,24	3,76	0,77	2,31	0,16	0,88
0,837	4,92	4,86	0,38	4,24	1,11	2,44	0,21	1,07
Бромбензол – бензол								
0,000	2,28	2,28	_	2,28	_	2,28	0,03	1,00
0,175	3,00	2,98	0,12	2,78	0,31	3,34	0,06	1,21
0,361	3,70	3,65	0,25	3,19	0,63	2,41	0,10	1,38
0,560	4,36	4,27	0,40	3,52	0,94	2,47	0,12	1,54
0,772	4,94	4,80	0,57	3,75	1,21	2,54	0,13	1,70
1,000	5,44	5,25	0,73	3,96	1,43	2,60	0,17	1,81
Бромбензол – н – гексан								
0,000	1,89	1,89	-	1,89	_	1,89	0,00	0,75
0,238	2,60	2,59	0,07	2,48	0,24	2,03	0,04	0,90
0,455	3,33	3,30	0,18	3,02	0,52	2,17	0,06	1,08
0,652	4,05	4,00	0,31	3,42	0,81	2,32	0,11	1,24
0,834	4,75	4,64	0,48	3,74	1,21	2,46	0,14	1,54
					нзол – бензол			
0,000	2,28	2,28	_	2,28	_	2,28	0,03	1,12
0,167	2,77	2,75	0,09	2,60	0,21	2,34	0,05	1,45
0,347	3,31		0,21	2,87	0,43	2,45	0,09	1,82
0,545	3,78	3,25	0,35	3,04	0,60	2,55	0,10	2,13
0,762	4,23	3,67	0,50	3,19	0,74	2,64	0,12	2,43
1,000	4,64	4,05	0,67	3,30	0,86	2,76	0,13	2,71
		4,38		<u> </u>				
	T				ол – н – гексан		1	
0,000	1,89	1,89		1,89	_	1,89	0,00	0,90
0,227	2,40	2,39	0,06	2,29	0,16	2,05	0,04	1,17
0,439	2,95	2,92	0,15	2,67	0,35	2,23	0,08	1,39
0,637	3,49	3,41	0,28	2,98	0,54	2,40	0,09	1,85
0,824	4,04	3,90	0,43	3,13	0,71	2,58	0,12	2,24

С.Т. АЗИЗОВ, О.А. АЛИЕВ

Рис. 1. Приведенная диаграмма Коул-Коула для системы йодбензол – бензол (C_6H_5J — C_6H_6J) при 20°С.

2.

Рис. 2. Температурная зависимость ϵ ' и ϵ " системы хлорбензол – н – гексан (C_6H_5Cl – н – C_6H_{14}) при λ = 12,80 см; содержание C_6H_5Cl в мольных долях: 1 – 1,0; 2 – 0,794; 3 –0,562; 4 – 0,3

выводы

1. Получены экспериментальные данные по диэлектрической релаксации двойных систем хлорбензол — бензол, хлорбензол — н — гексан, бромбензол — бензол, бромбензол — н — гексан, йодбензол — бензол, йодбензол — н — гексан в

широких интервалах концентраций и температур при длинах волн 12,80 и 3,26 см.

- Дополнительная высокочастотная дисперсия является резонансной.
- 3. Прослежена зависимость релаксационного процесса от размеров формы молекул неполярного окружения.

^[1] S.T. Azizov, O.A.Aliev, R.G.Abaszade, International Journal of Latest Research in Science and Technology, Volume 5, Issue 4: Page No58-62, July - August 2016

^[2] *C.T.A3u308*, *O.A.Anue8*, Fizika, vol. XXIII, №4, section: En, p. 13 – 16., 2017

^[3] Л.М. Иманов, К.Э. Зульфугарзаде, Изв. АН Азерб ССР, Серия физ.-мат. и техн. н., № 6. 1960

^[4] J.Ph. Poley, LOnde, Electr., 35, 435, 1955

^[5] *Ajay Chaudhari, A.G. Shankarwar, B.R. Arbad, S.C. Mehrotra.* Journal of Solution Chemistry, vol.33, № 3, March 2004, p. 313 – 322

^[6] P.B. Undre, S.N. Helambe, S.B. Jagdale, P.W. Khirade and S.C. Mehrotra, Pramana-J. Phys., 68, 851 (2007)

^[7] Г. Фрелих, Теория диэлектриков, М., 1960