ФОТОРЕЗИСТОРЫ НА ОСНОВЕ p-Cd $_x$ Hg $_{1-x}$ Te С ЛОКАЛЬНЫМИ ПРИПОВЕРХНОСТНЫМИ N^+ ОБЛАСТЯМИ

Н.Д. ИСМАЙЛОВ, Р.И. МУХТАРОВА, А.А. РАДЖАБЛИ, Ш.О. ЭМИНОВ

Институт Физики НАН Азербайджана, AZ 1143, Пр. Г. Джавида, 131, Баку, Азербайджан ismailovnamik@yahoo.com

В работе представлен новый тип охлаждаемых ИК-фоторезисторов на основе $Cd_xHg_{1-x}Te$ с значительно высокими параметрами фоточувствительности при слабом фоне. Приведены технология изготовления, принцип работы и фотоэлектрические свойства этого фоторезистора. В данном фоторезисторе чувствительность значительно увеличивается, за счет увеличения τ_{ef} при слабом фоне, увеличения напряжения смещения, и уменьшения толщины образца, более чем в 10^3 раз по сравнению с однородным фоторезистором.

Ключевые слова: ИК- фотоприемники, $Cd_xHg_{1-x}Te$, Оже-рекомбинация, эффекта вытягивания **PACS:** 07.57, 85.60. Dw, 85.30

Одной ИЗ областей применения важных охлаждаемых ИК-фотоприемников (ФП) является регистрация экстремально слабого излучения при очень низком фоновом излучении в среднем (3-5 мкм) и дальнем (8-14 мкм) ИК-диапазоне. Для этих целей наибольшей пороговой чувствительностью обладают $\Phi\Pi$ на основе $Cd_xHg_{1-x}Te$ (КРТ), в которых преобладает механизм Оже-рекомбинации. При этом наиболее высокие параметры ФП могут быть достигнуты на слаболегированном КРТ р-типа [1]. Однако, сложность практической реализации таких ФП заключается в трудности получения однородного слаболегированного материала р-типа, влиянии на коэффициент усиления эффекта вытягивания (ЭВ) носителей заряда и поверхностной рекомбинации [2, 3,4].

настоящей работе предложен модифицированный фоторезистор из КРТ р-типа с составом x = 0.23-0.3, в котором устраняются указанные недостатки. В данном типе фоторезистора, приповерхностной области методом ионноплазменной обработки созданы множество локальных областей n^+ -типа проводимости с размерами $A << L_n$, расстояние между которыми $b < L_n$ (рис. 1), здесь L_n – диффузионная длина электронов. Данные n^+ -области являются потенциальными ямами для электронов. Так как $b < L_n$, то значительная часть генерированных в pфоторезистора электронов объеме диффундировать к границе р-п перехода и под действием его поля затянутся в *n*-область, и будут удерживаться там в течение времени $\tau_{ef} = R_0 C_0$ (где R_0 , C_0 – сопротивление и емкость *p-n* перехода), которое при слабом фоне на несколько порядков может превышать время жизни т в обычных фоторезисторах [5]. Так как приложенное к образцу электрическое поле очень слабое по сравнению с полем р-п перехода, то при увеличении напряжения смещения ЭВ носителей наблюдаться не будет. Технология изготовления фоторезистора очень проста. поверхности слоя Cd_xHg_{1-x} Te, в нанесенном пасссивирующем покрытии из ZnS фотолитографии вскрываются окна с размерами 10-20 мкм. При нанесении защитного покрытия из SiO₂ методом магнетронного распыления, в этих окнах формируются n^+ -области, под воздействием плазмы в рабочей камеры. Затем наносятся омические контакты.

Рис. 1. Геометрическая модель фоторезистора

Рис. 2. Полевые зависимости сигнала U_s (1,3) фотопроводимости для образца p-Cd $_x$ Hg $_1$ - $_x$ Te (x = 0.28) с p_0 = $8 \cdot 10^{-15}$ см $^{-3}$ и τ_n = 1,2 мкс до (1) и после (2, 3) плазменной обработки при потоке фоновой засветки Φ_b ; 10^{16} (2) и 10^{14} (3) см $^{-2}$ с $^{-1}$ при T = 80 K

ФОТОРЕЗИСТОРЫ НА ОСНОВЕ p-Cd $_x$ Hg $_1$, Те С ЛОКАЛЬНЫМИ ПРИПОВЕРХНОСТНЫМИ N^+ ОБЛАСТЯМИ

Экспериментальные образцы изготавливались из p-Cd_xHg_{1-x}Te (x=0.28) с $p_0=8\cdot 10^{-15}$ см⁻³ и временем жизни носителей заряда $\tau_{\rm n}=1,2$ мкс при T=80 K, которое определялось по релаксации напряжения сигнала U_s при импульсной засветке светодиодом с длиной волны λ =0,9 мкм. В изготовленных образцах наблюдалось увеличение $\tau_{\rm ef}$ до $\tau_{ef}=2\cdot 10^{-5}$ сек при уменьшении уровне фона до $\Phi_{\rm o}=10^{15}$ фотон/см²·с. На рис.2 показаны полевые зависимости сигнала U_s фотопроводимости до и после плазменной обработки при фоновой засветке $\Phi_{\rm b}=10^{16}$ (2) и 10^{14} (3) см⁻²с⁻¹ при T=80 К. Как видно из рисунка для исходного

образца наблюдается насыщение U_s при увеличении $U_b>1$ В из-за ЭВ. Для образца с локальными n^+ областями ЭВ носителей не наблюдается вплоть до напряженности приложенного поля E=100 В/см.

Из рисунка, также видно, что при этом сигнал U_s увеличивается более 10^3 раз при слабом фоне ($\Phi_b=10^{14}$ см $^{-2}$ с $^{-1}$) по сравнению с однородным фоторезистором.

Таким образом, в данном $\Phi\Pi$, чувствительность значительно увеличиваться за счет увеличения τ_{ef} при слабом фоне, увеличения $U_{b.}$ и уменьшения толщины образца.

^[1] Antoni Rogalski // Infrared Physics & Technology. 2002. v.43. P.187-210

^[2] Фотоприемники видимого и ИК-диапазонов. Под ред. *Р.Дж. Киесса*. М.: Радио и связь. 1985. 328 с.

^[3] Risal Singh and Vardna Mittal // Defence Science Journal. 2003. V.53. No 31. P.281-324

^[4] А.И. Власенко, А.В. Любченко. Эффект вытягивания неосновных носителей в фоторезистивных кристаллах Cd $_{\rm x}$ Hg $_{\rm 1-x}$ Te с различным типом проводимости. ФТП.т.28, В.7, с. 1219-1222(1994)

^[5] Emil Huseynov and Namiq Ismayilov. Super high sensitive low-dimention IR-detector.Phys.Status Solidi C, N7, 1156-1159(2013