ФОТОРЕЗИСТОРЫ НА ОСНОВЕ *p*-Cd_xHg_{1-x}Te C ЛОКАЛЬНЫМИ ПРИПОВЕРХНОСТНЫМИ *N*⁺ОБЛАСТЯМИ

Н.Д. ИСМАЙЛОВ, Р.И. МУХТАРОВА, А.А. РАДЖАБЛИ, Ш.О. ЭМИНОВ

Институт Физики НАН Азербайджана, AZ 1143, Пр. Г. Джавида, 131, Баку, Азербайджан ismailovnamik@yahoo.com

В работе представлен новый тип охлаждаемых ИК-фоторезисторов на основе $Cd_xHg_{1-x}Te$ с значительно высокими параметрами фоточувствительности при слабом фоне. Приведены технология изготовления, принцип работы и фотоэлектрические свойства этого фоторезистора. В данном фоторезисторе чувствительность значительно увеличивается, за счет увеличения τ_{ef} при слабом фоне, увеличения напряжения смещения, и уменьшения толщины образца, более чем в 10^3 раз по сравнению с однородным фоторезистором.

Ключевые слова: ИК- фотоприемники, Cd_xHg_{1-x}Te, Оже-рекомбинация, эффекта вытягивания **PACS:** 07.57, 85.60. Dw, 85.30

Одной ИЗ областей применения важных охлаждаемых ИК-фотоприемников (ФП) является регистрация экстремально слабого излучения при очень низком фоновом излучении в среднем (3-5 мкм) и дальнем (8-14 мкм) ИК-диапазоне. Для этих целей наибольшей пороговой чувствительностью обладают ФП на основе Cd_xHg_{1-x}Te (КРТ), в которых преобладает механизм Оже-рекомбинации. При этом наиболее высокие параметры ФП могут быть достигнуты на слаболегированном КРТ р-типа [1]. Однако, сложность практической реализации таких ФП заключается в трудности получения однородного слаболегированного материала р-типа, сильном влиянии на коэффициент усиления эффекта вытягивания (ЭВ) носителей заряда и поверхностной рекомбинации [2, 3,4].

настоящей работе B предложен модифицированный фоторезистор из КРТ р-типа с составом x = 0.23 - 0.3, в котором устраняются указанные недостатки. В данном типе фоторезистора, приповерхностной области методом ионнов плазменной обработки созданы множество локальных областей n^+ -типа проводимости с размерами $A \ll L_n$, расстояние между которыми $b < L_n$ (рис.1), здесь L_n диффузионная длина электронов. Данные n^+ -области являются потенциальными ямами для электронов. Так как $b < L_n$, то значительная часть генерированных в *p*фоторезистора электронов объеме будет диффундировать к границе *p-n* перехода и под действием его поля затянутся в *n*-область, и будут удерживаться там в течение времени $\tau_{ef} = R_0 C_0$ (где R_0 , C_0 – сопротивление и емкость *p-n* перехода), которое при слабом фоне на несколько порядков может превышать время жизни т в обычных фоторезисторах [5]. Так как приложенное к образцу электрическое поле очень слабое по сравнению с полем *p-n* перехода, то при увеличении напряжения смещения ЭВ носителей наблюдаться не будет. Технология изготовления фоторезистора очень проста. Ha поверхности слоя Cd _xHg_{1-x} Te, в нанесенном пасссивирующем покрытии из ZnS метолом фотолитографии вскрываются окна с размерами 10-20 мкм. При нанесении защитного покрытия из SiO₂ методом магнетронного распыления, в этих окнах формируются n^+ -области, под воздействием плазмы в рабочей камеры. Затем наносятся омические контакты.

Рис. 1. Геометрическая модель фоторезистора

Рис. 2. Полевые зависимости сигнала U_s (1,3) фотопроводимости для образца p-Cd_xHg₁. _xTe (x = 0.28) с $p_0 = 8 \cdot 10^{-15}$ см⁻³ и $\tau_n = 1,2$ мкс до (1) и после (2, 3) плазменной обработки при потоке фоновой засветки $\Phi_{\rm b}$: 10^{16} (2) и 10^{14} (3) см⁻²c⁻¹ при T = 80 К

Экспериментальные образцы изготавливались из p-Cd_xHg_{1-x}Te (x = 0.28) с $p_0 = 8 \cdot 10^{-15}$ см⁻³ и временем жизни носителей заряда $\tau_n = 1,2$ мкс при T=80 K, которое определялось по релаксации напряжения сигнала U_s при импульсной засветке светодиодом с длиной волны λ =0,9 мкм. В изготовленных образцах наблюдалось увеличение τ_{ef} до $\tau_{ef} = 2 \cdot 10^{-5}$ сек при уменьшении уровне фона до $\Phi_o = 10^{15}$ фотон/см² с. На рис.2 показаны полевые зависимости сигнала U_s фотопроводимости до и после плазменной обработки при фоновой засветке $\Phi_{b,} = 10^{16}$ (2) и 10^{14} (3) см⁻²с⁻¹ при T = 80 К. Как видно из рисунка для исходного

образца наблюдается насыщение U_s при увеличении $U_b > 1B$ из-за ЭВ. Для образца с локальными n^+ областями ЭВ носителей не наблюдается вплоть до напряженности приложенного поля E=100 B/см.

Из рисунка, также видно, что при этом сигнал U_s увеличивается более 10^3 раз при слабом фоне ($\Phi_b=10^{14}$ см⁻²с⁻¹) по сравнению с однородным фоторезистором.

Таким образом, в данном $\Phi\Pi$, чувствительность значительно увеличиваться за счет увеличения τ_{ef} при слабом фоне, увеличения $U_{b.}$ и уменьшения толщины образца.

- [1] Antoni Rogalski // Infrared Physics & Technology. 2002. v.43. P.187-210
- [2] Фотоприемники видимого и ИК-диапазонов. Под ред. Р.Дж. Киесса. М.: Радио и связь. 1985. 328 с.
- [3] *Risal Singh and Vardna Mittal //* Defence Science Journal. 2003. V.53. No 31. P.281-324
- [4] А.И. Власенко, А.В. Любченко. Эффект вытягивания неосновных носителей в фоторезистивных кристаллах Cd _xHg _{1-x}Te с различным типом проводимости. ФТП.т.28, B.7, с. 1219-1222(1994)
- [5] Emil Huseynov and Namiq Ismayilov. Super high sensitive low-dimention IR-detector.Phys.Status Solidi C, N7, 1156-1159(2013)