О ПОДАВЛЕНИИ ОЖЕ-РЕКОМБИНАЦИИ В НЕОХЛАЖДАЕМЫХ ФОТОПРИЕМНИКАХ НА ОСНОВЕ Cd _xHg_{1-x}Te

Н.Д. ИСМАЙЛОВ

Институт Физики НАН Азербайджана, Az-1143, Баку, проспект Г. Джавида 131, ismailovnamik@yahoo.com

В работе представлен новый метод улучшения параметров фоточувстви-тельности неохлаждаемых ИКфоторезисторов на основе Cd_xHg_{1-x} Те. Он заключается в том, что в области поглощения, электрическое поле *E*, созданное градиентом концентрации акцепторов N_a , пространственным разделением увеличивает время жизни неравновесных носителей в 10^2 раз. На этом принципе реализован неохлаждаемый ИК-фотоприемник на область 3-5µm с высокими параметрами чувствительности.

Ключевые слова: ИК-диапазон, неохлаждаемые фотоприемники, Cd _xHg_{1-x} Te, Оже-процесс термогенерации **PACS:** 07.57, 85.60. Dw, 85.30

Для достижения высоких параметров фоточувствительности фотоприемников на основе узкозонных полупроводников, требуется их охлаждение до температур от 77 до 200 К. Необходимость охлаждения значительно увеличивает массу, габариты и стоимость всей аппаратуры. Поэтому одной из актуальных задач является разработка неохлаждаемых фотоприемников ИКдиапазона высокими параметрами с фоточувствительности. Основным фактором, ограничивающим параметры неохлаждаемых фотоприемников, является Оже-процесс термогенерации носителей заряда. Для подавления Оже-процесса в слое поглощения были предложены несколько неравновесный режим концепций, такие как экстракции и эксклюзии в фотодиодах [1.2] и метод оптимизации [3] параметров в фоторезисторах. Однако, большие токи смещения в этих структурах обуславливают высокий уровень шумов вплоть до 10 МГц [4].

В данной работе представлен новый подход для реализации высоких параметров фоточувствительности неохлаждаемых фоторезисторов на основе $Cd_xHg_{1-x}Te$. Он заключается в том, что в область поглощения введено электрическое поле *E*, путем создания неоднородного по толщине слоя распределения акцепторов N_a . Пространственное разделение неравновесных носителей электрическим полем увеличивает время жизни неравновесных носителей, которое, как приведено в [4], описывается формулой;

$$\tau_{\rm r} = \tau_{\rm o} \cdot \exp(\phi_{\rm r} \cdot q/kT), \qquad (1)$$

здесь τ_o — время рекомбинации в отсутствии пространственного разделения носителей, q-заряд электрона, k-постоянная Больцмана, T-температура. Рекомбинационный барьер φ_r , связанный с градиентом концентрации примеси $N_a(x)$, определяется по формуле:

$$\varphi_r = \kappa T/q \cdot ln(p^+/p^-) \tag{2}$$

где p^+ и p^- -концентрация дырок на противоположных сторонах образца.

Для дальнейшей рекомбинации, разделенные неравновесные носители должны преодолеть рекомбинационный барьер φ_r .

Из (1) и (2) следует, что $\tau_r = \tau_o (p^+/p^-)$. При этом необходимо, чтобы время разделения носителей заряда t_{dr} было существенно меньше времени их жизни τ_o .

Величина t_{dr} определяется как отношение толщины образца d к амбиполярной дрейфовой скорости v_{dr} . Минимальная концентрация дырок в p^{-} слое ограничивается концентрацией собственных носителей заряда n_i при комнатной температуре.

В p^+ -области время жизни τ_o по Оже - механизму определяется выражением [3]:

$$\tau = 2\tau_{il}Z^{2}(\gamma+1)/[\gamma(\gamma+Z^{2})(1+Z^{2})]$$
(3)

где Z- отношение дырочной концентрации к собственной p_0/n_i в термическом равновесии, τ_{i1} время A1 рекомбинации в собственном полупроводнике, γ -отношение времени рекомбинации A7 к A1. Значения τ_{i1} и γ определяются из теоретических расчетов [3].

Как следует из (3) τ_o уменьшается пропорционально Z^2 , следовательно, оптимальную концентрацию в p^+ -области можно определить, приравняв t_{dr} и τ_o .

В экспериментальных образцах концентрация акцепторов в р⁻ и p^+ -областях, полученных термодиффузией меди, имели значения $3 \cdot 10^{16}$ см⁻³ и $5 \cdot 10^{17}$ см⁻³, соответственно. Высота барьера при этом $\varphi_r \approx 60$ мВ.

В работе [4] мы уже сообщали о наблюдении аномально больших значений τ_r фотопроводимости p^+-p-p^- структур из Cd_x Hg_{1-x}Te (0.24 \leq x \leq 0.29) в интервале T=77-150 К. Наблюдаемые большие значения τ_r =10-40 мс указывают на подавление всех типов рекомбинации внутренним электрическим полем. При комнатной температуре в этих структурах, также, благодаря подавлению Ожепроцессов рекомбинации, наблюдаются времена жизни, существенно превышающие теоретически расчетные в 10^2 раз, как это видно из приведенного рисунка. При комнатной температуре, концентрация

неравновесных носителей определяется термогенерацией, а не тепловым фоновым излучением, как при низких температурах.

Puc. Температурная зависимость времени жизни в p- Cd _xHg_{1-x}Te (_x=0.27, p₀= 3 ⋅ 10¹⁶ см⁻³), расчетные кривые по механизмам рекомбинации:1-Оже A1, 2- Оже A7, 3-излучательная, 4-расчетная зависимость с учетов Оже процессов, излучательной и примесной рекомбинаций, 5- экспериментальные значения.

При низких температурах, большая интенсивность фоновой засветки приводит к значительному понижению высоты потенциального барьер φ_r . В результате темп рекомбинации неравновесных носителей в обедненной области может превышать темп рекомбинации их на поверхности и в объеме [5]. Этим и объясняются малые значения τ при низких температурах.

На основе этих структур реализованы неохлаждаемые ИК- фотоприемники на область 3-5 мкм с высокими параметрами чувствительности. Основным параметром фотоприемников является удельная обнаружительная способность, которая для однородно легированного слоя определяется формулой [3]:

$$D_{\lambda}^{*} = \lambda \eta \left[\left(\frac{1}{z} + Z \right) \left(\frac{\tau}{n_{i}d} \right) \right]^{1/2} / (hc)$$
(11)

где η -квантовая эффективность, *с*-скорость света, h-постоянная планка.

Как видно из формулы, обнаружительная способность существенно растет за счет увеличения τ и Z.

- T. Ashley, C.T. Elliot and A.T.Harker. Nonequilibrium mods of operation for infrared detectors. Infrared Phys.Vol.26, No.5, pp.303-315,1986
- [2] T. Ashley, C.T. Elliot. Non-equilibrium devices for infrared detection. Electron. Lett., 1985,85, pp.451-452
- [3] M. Kalafi, H. Tajalli, M.S. Akhondi, F. Kaziev. Realization of uncooled photoconductor based on Cd _xHg_{1-x}Te operating in 2-6 μm spectral range. Infr. Phys. &Technol.41(2000) 293-297
- [4] *N.J. Ismayilov*, *A.A. Rajabli*, *M.A. Musayev* and *I.I. Abbasov*. Recombination and long-term relaxation of photoconductivity in p^+-p-p^- structures of Cd_xHg_{1-x}Te (0.24 $\leq x \leq$ 0.29). Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 8, pp. 1058–1061
- [5] Н.Д. Исмайлов, Н.Х. Талипов, А.В. Войцеховский. Высокочувствительные двухслойные фоторезисторы на основе *p*-CdxHg1-xTe с конвертированным приповерхностным слоем. Изв. вузов.Физика. (2017),123-127