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Electromagnetic “cooling” and localization of microparticles (in particular, atoms and molecules) under conditions of the high 

vacuum are very important for a number of directions of physics and technologies including quantum information, ultra-high-resolution 
spectroscopy, and optomechanics of such particles. 

I have proposed sufficiently simple methods for the slowdown and trapping of various microparticles (including atoms and 

molecules) by means of external electromagnetic fields which induce (for such particles) potential wells having fixed spatial 

distributions but deepening over time up to some limit. It is assumed that considered particles are under conditions of the high vacuum 
and forces acting on these particles are not dissipative, that is they move without friction. Depending on whether the particles have 

electric (magnetic) moment, it is possible to use the controllable electric (magnetic) field or far-off-resonance laser radiation for 

inducing of corresponding potential wells for given particles. 

In the present work, I theoretically demonstrate possible applications of proposed methods for “cooling” and localization of 
particles for a number of nonstationary electromagnetic potential wells with different fixed spatial configurations.  In particular, 

optomechanics of levitated particles by various far-off-resonance laser beams, amplifying over time (up to some limit), is analyzed. 

New schemes of traps and decelerators of polarizable particles, based on corresponding nonstationary gradient forces, are considered. 

Proposed “cooling” and trapping methods may be applied in definite cases also for atoms and molecules in the ground quantum 
state.  Realization of such methods for atoms and molecules is important for applications in ultra-high-resolution spectroscopy, 

precision frequency standards and in quantum computing processes.  

 

Motion of classical particles without friction in a potential well deepening over time 

 

BASIC RELATIONSHIPS 

 

We will consider problems which may be solved on 

the basis of classical mechanics and electrodynamics. Let 

us assume that a point particle with the mass m freely 

moving in a three-dimensional space before its entering to 

the region V of the potential well 𝑈(𝑅, 𝑡), which explicitly 

depends not only on the coordinate 𝑅 but also on time 𝑡. 

The total energy of such a particle with the non-relativistic 

velocity 𝑣 is described by the known formula: 

 

            𝐸(𝑅, 𝑣, 𝑡) = 0.5𝑚𝑣2 + 𝑈(𝑅, 𝑡)                     (1)  

Further we will consider the potential energy 𝑈(𝑅, 𝑡)  
of the following type: 

  𝑈(𝑅, 𝑡) = 𝑠(𝑅) ∗ 𝜑(𝑡)                      (2) 

where the coordinate function 𝑠(𝑅) ≤ 0 in the region V, 

and 𝜑(𝑡) ≥ 0 is nondecreasing function of time 𝑡. 

Such a potential (2) may be created for particles 

having electric or magnetic moment by a controllable 

electromagnetic field with the growing strength (up to a 

certain time moment) but with a fixed spatial distribution. 

We have the following motion equation of the particle in 

case of the potential energy (2): 

 

𝑚
𝑑2𝑅

𝑑𝑡2 = −𝜑(𝑡)
𝑑𝑠(𝑅)

𝑑𝑅
                            (3)   

From relations (1)-(3) we directly receive the formula 

for the time derivative of the total energy  𝐸(𝑅, 𝑣, 𝑡) of the 

particle: 

                              
𝑑𝐸

𝑑𝑡
= 𝑠(𝑅)

𝑑𝜑(𝑡)

𝑑𝑡
≤ 0.                       (4)  

According to inequality (4), increase of the function 

𝜑(𝑡) with time 𝑡 leads to decrease of the total energy 

𝐸(𝑅, 𝑣, 𝑡) (1) of the particle in the region V of the potential 

well, where the coordinate function 𝑠(𝑅) ≤ 0. 

We see from formula (1) that the particle cannot go 

beyond the potential well and reach the region 

with U(R, t) = 0, when its total energy E will be negative. 

It is important to note, that under such a condition  E < 0, 

the considered classical particle will be localized in the 

region V of the potential well even after output of the 

nondecreasing time function φ(t) on a constant value. 

At the same time, a sufficiently fast particle 

overcomes such potential wells in spite of their deepening 

over time. However, according to formulas (1) and (4), 

kinetic energy of this particle decreases at transits of such 

wells between space regions where the particle potential 

energy U(r, t) = 0.  

Further we will analyze trapping and slowdown of 

considered classical particles by a spatially 

inhomogeneous electromagnetic radiation with intensity 

increasing over time up to a certain limit. In so doing, it is 

assumed that the radiation pressure exerted on particles by 

such a radiation is small compared to the light induced 

gradient force acting upon them. This is possible for 
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particles that are nearly transparent in the spectral range of 

their irradiation. We will analyze not too strong radiation, 

for which the induced electric dipole  

moment of the particle is proportional to the electric field 

strength, while the potential energy of the particle is 

proportional to the electric field squared. 

 

TRAPPING OF PARTICLES BY LASER FIELDS 

AMPLIFYING OVER TIME 

 

Let us analyze the possible (for practical realization) 

case of the amplifying with time standing light wave (along 

the axis z) whose intensity has the transversal Gaussian 

distribution. Such a radiation creates the potential well of 

the type U(R, t) = s(R) ∗ φ(t) (2) with the following 

coordinate function s(R) for particles with light induced 

dipole moments: 

 

s(R) = −J0 ∗ exp(−r2 r0
2⁄ ) ∗ sin2 (kz),        (5) 

 

where r = √x2 + y2 is the distance from the central axis 

of the light beam (with the characteristic radius r0), k is the 

wave number, and J0 > 0 is the value with the dimension 

of energy, which is determined by a polarizability of a 

particle. 

 

 
For example, we will consider the following time 

dependence 𝜑(𝑡) (2) for the radiation intensity: 

 

𝜑(𝑡) = (𝑡 𝑇⁄ ) ∗ 𝜂(𝑇 − 𝑡) + 𝜂(𝑡 − 𝑇), (𝑡 ≥ 0),     (6) 

 
where  𝜂(𝑞) is the step function (𝜂(𝑞) = 1 if 𝑞 ≥ 0 и 

𝜂(𝑞) = 0 when 𝑞 < 0). The function 𝜑(𝑡) (6) linearly 

increases from 0 to 1 in the interval 0 ≤ 𝑡 ≤ 𝑇 and is equal 

to unit, when 𝑡 > 𝑇. 

Fig.1, a present numerically calculated (on the basis 

of the motion equation (3)), temporary dependences of the 

distance  𝑟(𝑡)  from the axis of the light beam and 

longitudinal coordinate 𝑧(𝑡) of the particle, which 

approaches from the outside to the given beam at starting 

conditions specified in the moment  𝑡0=0. We see, that 

during increasing of the radiation intensity with time 𝑡 (6), 

trapping and three-dimensional localization of the 

considered particle occurs in the region of the beam which, 

according to the function 𝑠(𝑅) (5), creates the spatially 

periodic potential along the axis 𝑧. In this case the particle 

carries out vibration transversal motions 𝑟(𝑡) in limits 

determined by the characteristic radius  𝑟0 of the light beam 

(Fig.1, a) and also undergoes comparatively fast 

nondamped oscillations 𝑧(𝑡) in the longitudinal direction 

in the limit of the half wavelength 𝜆 = 2𝜋/𝑘 ≪ 𝑟0 of the 

radiation (Fig.2).  

 
 
Fig.1. Dependences of particle coordinates  𝑟(𝑡) =

√𝑥(𝑡)2 + 𝑦(𝑡)2 and 𝑧(𝑡) on time 𝑡 ≥ 𝑡0 at particle 

initial coordinates 𝑥(𝑡0)=0, 𝑦(𝑡0) = 5𝑟0, 𝑧(𝑡0)=0 and 

its initial velocity components 𝑣𝑥(𝑡0) = −2.5(𝑟0/𝑇), 

𝑣𝑦(𝑡0) = −5(𝑟0/𝑇), 𝑣𝑧(𝑡0) = 15(𝑟0/𝑇), given in 

moments  𝑡0 = 0 (a) and 𝑡0 > 𝑇 (b), when 𝐽0 =
5000𝑚(𝑟0/𝑇)2 and  𝑘𝑟0=1000. 

 

The given particle remains localized in such a potential 

well even if (𝑡 − 𝑡0) > 𝑇 (Fig.1, a), that is after the output 

of the radiation intensity on the constant value according to 

formula (6). One can see from comparison of Fig.1,a and 

dependence 1 in Fig.3 that trapping of this particle occurs 

when its total energy  𝐸(𝑡) (1) decreases up to negative 

values because of the inequality (4).     

Fig.1, b presents dynamics of a particle with the same 

initial values of velocity and coordinates as in Fig.1, а but 

specified in a moment 𝑡0 > 𝑇. Then, according to the 

dependence (6), the given particle flies through the 

stationary light beam, whose intensity is equal to the 

maximum value for the considered case of Fig.1,а. We see 

that this particle is not captured by the light beam and 

moves away from it after the primary rapprochement 

(Fig.1,b). The total energy 𝐸(𝑡) (1) of the given particle is 

constant during the whole its movement (dependence 2 in 

Fig.3). 
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Fig.2. Particle coordinate 𝑧(𝑡) (in units of the radiation 

wavelength 𝜆 = 2𝜋/𝑘) versus time 𝑡 in enlarged scales in 

the neighborhood of the point P from fig.1,a. Fig. 2,b 

presents the dependence 𝑧(𝑡) in the narrow region 
indicated by the arrow in fig. 2,а. 

 
Fig.3. The total energy 𝐸(𝑡) (in units  𝐽0 = 5000 ∙ 𝑚 ∙ 𝑟0

2/ 𝑇2) 

versus time 𝑡 ≥ 𝑡0. Curves 1 and 2 were calculated 

respectively for parameters of fig.1,a and fig.1,b. 

 

VISUAL DEMONSTRATION OF DISCUSSED 

TRAPPING PROCESS 

 

I have carried out numerical calculations also for a 

number of other potential wells with cylindrical and 

spherical symmetries described by the general formula 

𝑈(𝑅, 𝑡) = 𝑠(𝑅) ∗ 𝜑(𝑡). These calculations confirmed 

following qualitative results (а), (b) and (c) of the present 

work: 

(a) Even a highly shallow but increasing with time 

potential well may continuously capture sufficiently 

slow-speed particles flying through it. 

(b) Such trapped particles will remain in this potential well 

even after going out of a nondecreasing strength of the 

corresponding electromagnetic field on stationary 

values. However, such a stationary trap already will not 

capture new particles. 

(c) Since considered electromagnetic traps are based on 

non-dissipative forces, then particles, captured in given 

traps, carry out non-damped oscillation motions in 

limits of corresponding potential wells.   

 

SLOWDOWN OF PARTICLES BY LASER FIELDS 

AMPLIFYING OVER TIME 

 

Now we will analyze the case of a running (along the axis 

z) light beam, the intensity of which increases over time 

and is characterized by the Gaussian transverse intensity 

distribution. For particles with induced dipole moment, this 

radiation creates a potential well of the type  𝑈(𝑅, 𝑡) =
𝑠(𝑅) ∗ 𝜑(𝑡) with the coordinate function 𝑠(𝑅) of the form: 

 

 

𝑠(𝑅) = −𝑃0 ∗ 𝑒𝑥𝑝(−𝑟2 𝑟0
2⁄ ),               (7) 

 

where 𝑟 = √𝑥2 + 𝑦2  is the distance from the beam central 

axis (𝑟0 is the characteristic beam radius), 𝑃0 > 0 is a 

constant quantity with the dimension of energy that is 

determined by a particle polarizability. 

   For example, let us consider the following time 

dependence 𝜑(𝑡) (2) for the beam intensity: 

 

𝜑(𝑡) = 1 − 𝑒𝑥𝑝 (
−𝑡

𝜏
), (𝑡 ≥ 0),                 (8)   

where 𝜏 is a characteristic time interval? Function  𝜑(𝑡) (8) 

increases with time from 0 to 1 and asymptotically 

approaches to 1 when 𝑡 ≫ 𝜏.     

 
    

Fig.4a demonstrates numerically calculated, on the 

basis of motion equations (3), dependence of the modulus 

of the particle velocity 𝑣 on time 𝑡 at initial conditions 

specified in a moment 𝑡0. The situation is considered, when 

such particles in this moment 𝑡0 are located outside of the 

region where the light beam (7) can exert sufficient 

influence on them. In case 𝑡0 = 0, particles with the speed 

𝑣0 = 𝑣(𝑡0)  transit through the laser beam (7) during 
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increasing of its intensity according to the time dependence 

𝜑(𝑡) (8). Then, at first the sharp increase of the particle 

speed takes place because of its getting into the light 

induced potential well (curve 1 in Fig.4a). However, after 

the passage of such a deepening over time well, the particle 

speed goes to the constant final value  𝑣𝑓, which is about 

35% lower than its initial value 𝑣0.    

 
Fig.4. Dependence of the particle velocity modulus 𝑣 (а) and its 

total energy 𝐸 (b) on time 𝑡 at following initial coordinates 

of this particle 𝑥(𝑡0)=0, 𝑦(𝑡0) = 5𝑟0, 𝑧(𝑡0)=0  and its 

velocity components 𝑣𝑥(𝑡0) = 0.5 (𝑟0/𝜏), 𝑣𝑦(𝑡0) =

 −5(𝑟0/𝜏) and 𝑣𝑧(𝑡0) = 1.5(𝑟0/𝜏), specified in the moment 

𝑡0 = 0 (curves 1) and 𝑡0 ≫ 𝜏 (curves 2) for the function 

𝜑(𝑡) (6), when 𝑃0 = 100𝑚(𝑟0/𝜏)2,𝑣0 = 𝑣(𝑡0) =

√𝑣𝑥(𝑡0)2 + 𝑣𝑦(𝑡0)2 + 𝑣𝑧(𝑡0)2  and 𝐸0 = 𝐸(𝑡0). 

 

According to the formula (4), this process is 

accompanied by decrease of the particle total energy (curve 

1 in Fig.4b). 

Curves 2 in Fig.1 correspond to a particle with the 

same initial values of velocity and coordinates as for 

considered above curves 1, but specified in a time moment 

𝑡0 ≫ 𝜏. Then, according to the time dependence (8), such 

a particle initially transits through the stationary light beam 

whose intensity already reaches a maximum value. In this 

case the final particle speed  𝑣𝑓 is equal to its initial value 

𝑣0 and the total energy of the particle is constant during all 

process of particle transit through such a stationary 

potential well (curves 2 in Figs.4a and 4b). 

 

POSSIBLE APPLICATIONS  

 

 We have considered structureless classical particles 

in potential wells of the certain type 

 𝑈(𝑅, 𝑡) = 𝑠(𝑅) ∗ 𝜑(𝑡).  In practice it is possible, for 

example, for a collection of noninteracting (with each 

other) microparticles, which fly without friction under 

conditions of the ultrahigh vacuum at action of the 

controllable electric (magnetic) fields or nonresonance 

laser radiation with fixed spatial configurations. 

For analysis of possible trapping and slowdown of 

atoms and molecules by electromagnetic potential wells, 

consideration of their quantum structure is necessary. At 

the same time, results obtained in this work may be applied 

also for such atomic objects in definite cases. Thus, for 

example, it is possible creation of traps for atoms and 

molecules by a nonhomogeneous laser radiation with 

frequencies essentially detuned from resonances with 

atomic (molecular) transitions. Then the gradient force acts 

on atoms (molecules), which are in the ground quantum 

state, in the direction to the point of minimum of the light 

induced potential well. In particular, such wells may be 

induced also by laser beams considered in the present 

work. However, as was shown above, even highly slow-

speed microparticles, flying from outside through such 

stationary beams, will not be captured in corresponding 

potential wells. At the same time, proposed intensification 

of the laser radiation (during a certain time interval) will 

lead to large increase of a number of particles captured in 

given traps. 

 

 
It is necessary to note, that existing methods for 

slowdown of atoms by means of resonance laser radiation 

are inefficient for molecules because of their relatively 

complex quantum level structure. At the same time, the 

slowdown mechanism of particles by nonresonance light 

beams demonstrated in the present work is applicable also 

for cooling of ensembles of molecules in the ground 

quantum state. Therefore, in the future, development of 

corresponding effective decelerators of molecules under 

conditions of ultra-high vacuum will be important on the 

basis of search of optimal spatial configurations and 

amplification dynamics of nonresonance laser radiation.   

 

 

Scheme of possible molecules decelerator on the 

basis of nonresonant laser radiation amplifying over time.
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