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A MICROSCOPIC THEORY OF SPIN EXCITATIONS IN A CYLINDRICAL
FERROMAGNETIC NANOTUBES
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Spin-waves excitations in a cylindrical ferromagnetic nanotubes are investigated by use of the Green function method. The
nano-tube consists of the core and the surface shell and the core is surrounded by the surface shell. The expressions of Green’s
function for different spins of ferromagnetic nanotubes are obtained. The temperature dependence of magnetization is clarified in the
surface shell and core. The results are illustrated numerically for a particular choice of parameters
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1. INTRODUCTION plane) with a finite number spins arranged. The magnetic
properties of nanostructures are strongly dependent on the

In the last decade, there has been growing attention  system shape and size.
to the magnetic properties of materials at the nanoscales,
such as nanowires, nanoparticles, nanofilms, nanobelts, 2. MODEL AND FORMULATION
nanotubes, nanorods etc [1-3]. The reason is that these
materials have potential for applications in magneto- The schematic representation of nanotube with core-
electronic devices. On the other hand, these systems surface shell structure is displayed in fig.1. The black and
show many new typical, peculiar, and unexpected white circles are magnetic atoms constituting the core and
magnetic properties that cannot be exhibit in bulk systems  surface shell, respectively. The lines connecting them
[4-6]. In the experimental area, the ferromagnetic nano-  represent the nearest-neighbor exchange interaction. On
tubes have been successfully synthesized by various the other hand, each spins is connected to the nearest-
methods and there magnetic properties have been  neighbor spins on the above and below section.
investigated. Magnetic  nanotubes have potential
applications in ultrahigh-density magnetic storage
devices, biotechnology, nanomedicine, information
storage devices, and nanoelectronic devices etc [7-9].

In the theoretical area, the magnetic nanomaterials
have been investigated within the various theoretical
methods, such as effective- field theory (EFT) with
correlations, Monte Carlo Simulations (MCs), mean-field
approximation (MFA), Green’s function (GF) formalism
[10-12].

Spin-wave excitations in ferromagnetic nanotube
have recently been studied by a number of authors [5,6].
For example, A.L.Gonzalez, P.Landeros, Alvaro S.Nunes
investigate the spin wave spectra associated to a vortex
domain wall confined within a ferromagnetic nanotube  Fig.1. Schematic representation of a cylindrical nanotubes

[2]. Bin-Zhou Mi, Huai-Yu Wang Yun-Song Zhou (side view). The nanotubes are infinite in the

developed a microscopic theory for magnetic behaviors of direction perpendicular to the axes z.

single-walled nanotubes use of the many-body Green’s

function method [6]. A nanotube can be modeled as The system will be represented by the Hamiltonian

having a chosen shape and size cross section (in the x-y

i i

H=-0.388,.,-938,8,, -3, 388, ~h| 387 + 38 |-D NHENCHARS
, ,m i j

where J_, Jand J, are the exchange coupling between @t surface and core. The second term of Eq. (1) describes
the Zeeman interaction of the spins when an external

magnetic field h applied along the z-direction, the last
contribution is a single-ion anisotropy term (i.e. crystal
spin operators, the sum & is over nearest neighbors only ~ field).

two neighboring magnetic atoms at the shell surface, core
and shell surface and core, respectively. S, and S j are
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To study the magnetic properties of the nanotube and then employing the equation of motion in the
under consideration, we evaluate a retarded GF of the random-phase- approximation (RPA), one obtains the

form ((S;"(t);S; (t'))). After time Fourier transformation ~ following equations

the retarded GF is denoted as G, ,(@)=((S;;S;)),,
' |

(0-h—D-43(S!)=33,(SHIBL, + I(SI(G + Gl + Ghiyp +Griy )+ J(SHIGIY + Gl + Gl )= 6,16,

(@—h-D-43,(S5)~3(SH)B. 5 +I.(SHGE, + G2 + G, +Gl5, )+ I,(SHGE, =8,,.5,. )
(0-h-D-43,(2)~23,(SHIBEx + I(SH(G5 + Gl + Gl + Gl )+ 315G + G2 )= 6, 6.

- . | _
here N and M are layer indices, while 1,...,18 and 7 Grgz,nfi),r :exp[ilka]Gﬁ;,&),r 3)

label the position of the spins in layers N and m,
respectively.

Now the GF is further Fourier transformed along the
nanotube axis which periodic boundary condition. The

total wave vector has two components K., = (K, Q). The
system is periodic in the z direction, which lattice
constant isa. According to Bloch’s theorem has been zl

employed for plane waves in order to receive the system q= 5 1=012...5 @
equations [13,14]

As for circumferential direction, the discrete Fourier
transformed is taken with periodicity condition. One of
wave vector component denoted as ( takes the following

values [6]:

| Then the Fourier transformation of the GF is written as

1 ] . 1 o
G Lo =EZG$§?‘ exp[-iga] ; G =EZG$;?' exp[iga] (5)

=0 1=0

Using (3) and (5) the GF can be obtained by solving the equations (2)

Sa(w,) Sa(0,) Soar(oy) &a(o)
G — 1\ @y 4\@Wy 7\ @y 10\%k /. =(1....,6
n,n ga)—a)kl +§a)_a)kl +;a)—a)k| +; O — Wy ‘ ( )

(@ =4 F = 345D @, —A;)—IZ(SH)?

o (@a)= 31_[ (a)kl — Wy )

j=l

(@, — A, F = 3.(SE) e, — A, )—3I2(S2)?

o, (a)m ) = SH (a)k| — Wy )

j=l

(@, = A F = 3(SE) e, — A, )—4I2(SE)?

2% (a)kl ) = GH (a)kl — o, )

j=l

(6a)

o — A .
alo(wkl)_6a) "o (J¢|)
( k.l k,j)
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G = ZS: ﬂl(a)kl ) +26: 134(5%)_'_29: ﬂ7(wkl ) + i ﬂlo(a)kl ); = (7’ 9, 11’__“117)

N
1 O—Wy g W—0Oy (o7 O—Oy o0 W— Oy

(a)k,l — A Xa’k,l - ﬂ’s)_ ‘]1<Scz>(a)k,l — A+ ‘]1<Ssz>)_ ‘]<Scz>(a)k,l - A — ‘]1<Scz>)

Piloy )=
( ) 31__|[ (a)kl — Wy )
J#
i) = Per =P Nt =)= 3u(S: o =2 +33,(8D)+ ISD0y =4 =3sD)
31__|[(a’kl _wkj)
j=
(@, = 2 N, = A )= IS @, — A +4I (S )+23(SH )@y, — A, — 3,(ST))
,B7(wk|): ' ’ : '
GH(a’kl _a)kj)
J#
LY — A, —2J3(S;)
ﬁlo(wm) 6(a)k,| _a)k'j)
e S 71(a)k|) 3 74(‘%) 2 77(‘%) 1 ) _
G = o0 T aa oo ° =(8,10,12.....18)
IHSINSE) ~ (@ = A o, — 2. = 3(SD))
1( X )= ' :
3H(a)kl _a)kj)
j=
74(60k| ): _ J12<SCZ><SSZ> + (a)kx' — 4 ka,l — A+ J<Scz>) (6c)
SH(a)kl _a)kj)
V7 (a)kl ): BRIV VA (wk" —4 Xa)k" — A +2J <Scz>)

6H (a)k, - a’kj)

=l

A, =h+D+3J,(S)y+2J(S ) 2—coska), A, =h+D+J,(SZ)+2J (SZ)(2—coska)

The poles of the Green functions occur at energies, which are the roots of the spin wave dispersion equation for
the nanotubes under consideration:
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w, =-2r,cos(p, /3)+b, /3, i1=147
g =2, ,008(7 — ¢, )/3)+b,,/3, i=258

g =21, COS((” + @i, )/3)+ b, /31 =369

W)
By = 0.5(3(S2) + A, +A.)+0.5/(23(SZ) + A+ A,)7 +AIZ(SIN(SZ) — 202 (SZ) — A, A,)
@y =05(2I(SZ)+ A, +A,) —05J(23(SI) + A, + A.)° + A2 (SINSZ) — 234 (SE) = A A )
By = 3,(ST) + A,
where
2b° —oh.c, +27d, | .
r = ‘3(:i —bf‘/S, , arccos[ zm J i=14,7
b, =—(J +J,XSZ) -4, — 24,
C, = —232(SINSH) = XS + I, (SINI(STY + A, + A, )+ A, (23(SEy +24, + A,)
d, = I3(SIY2(SIY +(I(S) + A, NIZ(SZY2 = 22 = I (STYA, )+ 23 2(SINSHII(SZ) + 4,)
b, =(3 = I, XSI)— A, —24,
C, = —4J2(SINSH) —BI2(SIY2 + I (S I(SH) + A, + 4, )+ A, (- 23(SZy+24, + A,)
d, = J2(SH2(SZYy —(3(SZ) = 2, JBIZ(SZ)? = A2 = J(SHIA, )+ 23 2(SIN(SZ)(3I (SZy+24,)
b, =(23 —J, KSZ) - A, — 24,
C, =—BJ2(SINSI) —4d2(SHY? + I (SN 23(SZy+ A, + A4, )+ A, (- 43(SZY+ 24, + 4,)
d; = 32(S5)2(SE) —(23(S2) — 2, JAIZ(SE)? — 22 = 3,(SHHA, )+ IA(SENS (B (S7) +52, )
Solving the average spin, we derive the correlation function (S™S™) using the spectrum theorem [14,15]
(575" =—§—izk:zdw 'mGe(ﬂka;‘i’;ig) ®)

Here S=1/k,T, kg is the Boltzmann constant, T is the temperature. Using (5) and the relation
]/(X + ig) = P( X)— i7z5(x) to obtain the imaginary part of the Green functions, one finally obtains
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2S aa)) a,(0,) &a(o,) “a(a))j
S- —_cY 1 Kl 4 Kl 7 Kl 10 Kl =l’2’6
< nz nr> N Zk:(zeﬁa),d _ Ze'ﬁwkl _1+Zeﬁwk| _1+§)eﬂ“’kl -1 3

2S S ,31 a)kl ﬁlo
s-gry__ 28 ~79..17
< n,zVn, 1—> N ;(; eﬂa)kl _ z eﬁa)k' _ Z eﬁwkl _1 Z eﬂtdm _ j 4 (9)

S,

n,z n‘[>

= Z( : M_,_ 6 74(a)kl)+ S 77(a)kl)+ 1 ] r=810...,18
1=1

. = eﬁa’m _1 - eﬂa’m _1 = eﬂa’m _1 6(eﬂwk12 _1)
According to the theory of Callen [16] the average spin can be calculated using the following equation

(S +1+ D)D>" + (S — D)L+ D)***
OB (14 @)1

(§*) = (10)

where CD=<S )

2(S%)

2 3 0 1 2 3
ka ka

(=]
—_

Fig. 2. Spin wave frequency versus wave number ka for the nanotubes under consideration with parameters

h/d=02, D/J=01,J,/J=05,J,/3=15.
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Fig. 3. Temperature dependence of the spin magnetization for the parameters h/J =0.2, D/J =0.1, S, =5,=05

Now the equation (8) and (9) can be solved self consistently to obtain the average spin at any given temperature.

If S=1/2 (S :%—<ss+>.
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3. CONCLUSIONS

In this paper, we present the theory of spin-wave
excitations of a cylindrical ferromagnetic nanotubes.
Dispersion equations of spin waves propagating along the
nanotubes, and temperature dependence of magnetizations
for nanotube with core/shell structure have been studied.
Fig. 2 shows spin-wave spectra for reduced frequency
@/ J versus ka for nanotubes under consideration. The
frequencies for the lowest branches are not zero at
ka=0. Easily, it can be explained by applied external
magnetic field and single-ion anisotropy. The spin wave
frequencies increase with increasing wave vectors and
exchange coupling between spins. On the other hand, with
increasing value of the spins spin wave frequencies
increase. It can be verified from these results that when
J, = 0 for the nanotubes depicted in fig.1 they reduces for

the two magnetic single-walled nanotubes.

The temperature dependence of magnetization in the
nanotubes under consideration is demonstrated in fig. 3.
The spontaneous magnetization of the spins at zero

temperature is (S*) =0.5. The magnetizations decrease

continuously with increasing values of temperature, and
they become zero at critical temperature; therefore a
second-order phase transition occurs. We illustrate the
magnetization  versus  reduced  temperature  for
J;/J=05, J,/IJ=2and J,/3=2, J /J=05
respectively. In the each case, the total spin magnetization
has the middle value. If exchange interaction between

magnetic atoms at surface grows weaker, then their
magnetizations are weaker than that of core spins.

Magnetization of the surface spins labeled
r=7,911131517 is smaller than that of the spins
labeled 7 =810,12,1416,18. This will be able to

understand clearly. For example, surface spin labeled
T =7 exchange interacts with one core spin
labeled 7 = 7, while spin labeled 7 =8 with two core

spins 7=1 andz =2. But in particular case, when
J, =0 all spins has the same orientation and the curves

coincide.
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