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The smectic liquid crystal (SmLC) is used to fabricate an array of self-assembled defects in which each has a spindle torus 

structure.  Each defect is a toroidal focal conic domain (TFCD) with an optical vortex generation function.  The mechanism of optical 

vortex generation in TFCD was studied in details and found that a TFCD is an integration of radial graded-index (GRIN) layers and 

axially GRIN shells.  The light focusing and polarization transformation characteristics of the GRIN layers are formulated to realize a 

single milimetric optical device with vortex generation function.  
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1. INTRODUCTION 

Optical vortex or phase singularity generation has 

been found to be one of the challengeable topics in the 

integrated optics [1].  The space-variant polarization, 

(transversely nonuniform), and dislocations such as 

optical vortices (Fig.1) are studied and applied to high 

resolution microscopy development, optical manipulation, 

quantum computing, and astronomical imaging.  Single 
optical vortex generating devices have been reported in 

recent years. However, the requirements for an array of 

optical vortices in large size have also been increasing for 

applications such as opto-mechanical pumping, 

multichannel optical communicating, quantum 

computing, and astronomical holography.   

 

 
 

Fig. 1. Helical wave fronts or optical vortices and radial / 

azimuthal polarizations 

Optical beam with helical wave front, i.e., an optical 

vortex; (a) right hand circular (RHC) wave front, (b) left 

hand circular (LHC) wave front. Space-variant 

polarizations; (c) radial polarization. (d) azimuthal 

polarization. 

 

Variety of methods have been developed to generate 

optical vortex arrays, such as electron-beam, lithography, 

photo-polymerization, and direct laser writing of radial 

birefringence.  Among these methods liquid crystals 

(LCs) have been used to generate optical vortex arrays 

because of quick and simple stabilization of molecular 

ordering and structure. Recent studies show the 

realization of arrays of microscopic optical vortex 

generators using cholesteric or nematic LCs [2].  

However the mechanism of optical generation in toroidal 

focal conic defect (TFCD) has not been reported yet. In 

this study, the vortex array generation was analyzed and 

the light field propagation was clarified in a single 

smectic LC (SmLC) TFCD [3]-[4]. The analysis results 

are reflected on fabrication of a novel millimeter order 

single optical vortex generator, namely a novel optical 

device.   

 

2.      STRUCTURING TFCD ARRAY 

Among the aforementioned methods SmLC is used 

for TFCD fabrication because of quick and simple 

stabilization of molecular ordering and structure. To 

fabricate TFCDs, the crystalline LC material is deposited 

on the substrate, and the substrate is heated to temperature 

exceeding 65 °C, i.e., corresponding to the isotropic phase 

of the LC. The glass substrate is cooled at a rate of 

−5°C/min to form the smectic A phase. The TFCDs are 

self-assembled on the substrate.  

In this study the vortex array generation was 

analyzed in a single torus SmLC defect to clarify the 

behavior of light field propagation in the TFCD. 

 

3.      TFCD STRUCTURE 

In the aforementioned fabrication method the SmLC 

defects are self-assembled in a large number (about 1000 

TFCDs). Each defect is a TFCD that generates optical 

vortex.  The fabricated feature size is about 35 m.  

The geometry of a TFCD is shown in a cylindrical 

coordinate systems in Fig.2.  A TFCD is found to be a 

spindle torus as shown the cross section in Fig.3.  The 

TFCD cross-section is defined as B1C1C2AB2 in Fig.3.  

The status of SmLC directors are shown at point B1 and 

C1 in gray colors. The bottom director is in -direction (or 

y-axis) in cylindrical coordinate system.  These directors 

are distributed along -axis, i.e., from side walls (B1B2 or 

C1C2) toward the center of the TFCD.  The extra ordinary 

refractive index (director laid on the bottom of the TFCD 

along ) is ne [ne(,/2)] for propagated light wave along 

the z-axis (=/2).  The directors are standing up 

gradually with decrease in zenith angle, and finally are 

vertical along the B1B2 or C1C2.  The refractive index 

(director standing up along the wall of the TFCD) is no 

[no(max/2,0)] for the propagating light along the z-axis.  

The refractive index difference along the vertical axis of 
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TFCD (z-axis) at an arbitrary  is given by the following 

equation, 
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The first term is the effective local refractive index 

of the extraordinary wave. The zenith angle  is given by 
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Since the directors are perpendicular to the radius of 

the spindle torus, i.e., the front surface of the TFCD, there 

is small differences between the TFCD height at the 

center (=0) and that at the side wall boundaries.  

Because a TFCD is a part of torus, the aspect ratio is 1:1, 

i.e., the diameter of the TFCD is equal to its height 

(Fig.3). The height of TFCD (on the front surface, zs) at 

an arbitrary  is given  
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𝐦𝐚𝐱

𝟐 −  
𝐦𝐚𝐱
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……………………….  

 

Using the above equations, the normalized refractive 

index difference can be shown by the following equation. 

 

𝒏 ,  
𝒏𝒎𝒂𝒙

  𝐬𝐢𝐧𝟐 ,                    (4) 

The TFCD has a funnel shape front surface.  The 

height variation, i.e., Eq.(3) is shown in Fig.4.  

 

 
 

Fig.2 Geometry of a TFCD 

         Cylindrical coordinate system is used to show the 

polarization transformation of the TFCD.  Ei(z,t) at 

azimuth angle of i is the amplitude of the incident electric 

field and Ee(z,t) at e is the emergent electric field. 

 

The normalized refractive index difference causes 

phase change of the propagating light.  The normalized 

refractive index has a sin
2
(,) variation.  Therefore, the 

squared sine is used for the normalized refractive index 

variation and for calculating the phase change.  

 
 

Fig.3. TFCD structure 

           Outer overlapped circles are the cross section of a     

            spindle torus. The rectangle of B1C1C2B2 is the cross    

            section of the TFCD.  

 

 
 

Fig.4. TFCD’s height vs. radius 

           Front surface of TFCD has a shape of funnel. The cross      

           section of the funnel is plotted versus the radius of the  

           TFCD (cylindrical body). 

 

The normalized phase is plotted versus  and z as in 

Fig.5. 

 

 
                                                a) 

 
                                                   b) 
Fig.5. Parabolic refractive index distribution 

          On axis refractive index changes from ne to no. (a)    

          Normalized refractive index along  and z in the TFCD. 

(b) Normalized refractive index along z-axis. 
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The refractive index on the bottom of the TFCD is ne 

that is decreasing along the z-axis. 

 

4. PHASE RETARDATION  

The phase retardation is calculated in terms of 

wavelength, thickness and birefringence distribution of 

optical media. Because the direction of molecular director 

varies along the propagation axis (z-axis), the 

birefringence should be integrated over the propagation 

path to get averaged effective birefringence. The resultant 

averaged phase retardation at an arbitrary position (0) is 

given by the following equation 
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Eq.(5) shows the variation of the phase along the z-

axis as well as the -axis.  This is due to refractive index 

change along the z-axis and -axis that is shown 

schematically in Fig.6.   

 

 
 

Fig.6. Phase retardation along the z-axis 

          Refractive index variation along z-axis at arbitrary radius    

          results in phase retardation [sin2(,)] along the z-axis   

          that changes with wavelength. The blue, green and red   

          colors represents the wavelengths of 400,  500 and                

         600  nm. Two graphs have been overlapped.  

 

The circular polarized light transmitted through 

TFCD has a phase difference with respect to original 

incident beam and has an intensity given in Eq.(6) as 

below.  Here K is the fraction of the original light (K1). 

Final polarization distribution of output field modulated 

by TFCD is characterized by Jones matrix of the optical 

system: 

 

𝐄𝐨𝐮𝐭 , , 𝐳 
𝟐

=  𝒄𝒐𝒔 𝒎 ∗  𝐬𝐢𝐧  
 ,𝒛 

𝟐
  

𝟐

+

+  𝒔𝒊𝒏 𝒎 ∗  𝐬𝐢𝐧  
 ,𝒛 

𝟐
 +

    𝒄𝒐𝒔  
 ,𝒛 

𝟐
 𝑲 

𝟐

……………..               . (6) 

 

Here, m is a topological charge that designates the 

number of cyclic changes in polarization state or phase 

along a closed path surrounding the center of the beam, 

defined as m=2q. This parameter is an integer value when 

the medium is rotationally symmetric. The topological 

charge (m) is twice the topological strength (q). 

Substituting these parameters into the Jones matrix, the 

TFCD’s Jones matrix can be obtained. Using the Eq.(6), 

the coronagraphs of the transmitted light wave and 

vortices can be obtained on the TFCDs.  The term of 

squared cosine changes with azimuth angle, resulting 

bright and dark zones. The term of squared sine changes 

with phase retardation in which the retardation itself 

changes with  and z or . The multiplication of these two 

functions results in a coronagraph (not shown) in which 

the zero-intensity regions; the dark rings and dark Maltese 

cross along the radial and azimuthal directions. The bright 

and dark regions are the spatially polarization changing 

areas, presenting vortices. 

 

5. TFCD AS GRIN LAYERS AND GRIN SHELLS 

As explained the refractive index of a TFCD in 

Eq.(4), a TFCD can be assumed as an integration of 

graded-index (GRIN) layers (in -direction) (Fig.7(a)) 

that have parabolic refractive index distributions with 

different on-axis refractive indices and focusing 

parametric. The refractive index distribution of a TFCD is 

shown in Fig.7(b).  

 

 
 

                                          a) 

 

 
                                         b) 

 
Fig.7. Parabolic refractive index distribution (Eq.7) 

a) On axis refractive index changes from ne to no.  The    

bottom and side wall refractive indices, ne and no, are 

constant (r). Focusing parameter (A) is different for 

each layer. 

 

In addition the refractive index change can be 

extended to vertical direction and assumed that a TFCD is 

an integration of GRIN shells as shown schematically the 

structure in Fig.8 (a) and (b). 

Each layer (disc shape) has a parabolic refractive 

index distribution that has a light focusing characteristic. 

The parabolic refractive index is given by the following 

equation in which the focusing parameter is given by “A”. 
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Since two types of light rays exist in a medium with 

parabolic refractive index distribution, Eq.(7) is a 

common refractive index distribution for both meridional 

and helical rays.  

 

 
 

a)                                           b) 

 
Fig.8 Parabolic refractive index distribution for each layer along 

z axis. 

         On axis refractive index changes from ne to side wall 

refractive index, no.  (a) Top view of the shells, (b) 

Perspective of a single shell. 

 

 
Fig.9. Parabolic refractive index distribution for each TFCD     

          layer.  The distributions for helical and meridional rays. 

 
 

Fig.10. Parabolic refractive index distribution for each layer 

            The center refractive index is different for each layer and    

             changes with z as well as r (r). 

 

The difference in the optimized refractive index 

distributions are shown in Fig.9.  The refractive index 

distributions for the layers are shown in Fig.10.   

 

6. CONCLUSIONS 

The mechanism of optical vortices generation from 

toroidal focal conic domains that are self-aligned in 

SmLC was studied to realize a functional optical device in 

millimetric size to generate a single or multi-phase 

singularities.  The refractive index distribution and the 

phase retardation for a single TFCD were formalized. The 

Jones matrix of the TFCD for vortex generation and layer 

light transmission were developed. The structure of a 

single TFCD was found to be an integration of graded-

index horizontal layers (in -direction) or vertical shells 

(in z-direction).  The analogue integration of thin GRIN 

layers can lead to realization of a single TFCD for optical 

vortex generation.  

_________________________________ 
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