INFLUENCE OF TEMPERATURE, FREQUENCY AND COMPOSITION OF TIIn_{1-x}Er_xSe₂ SOLID SOLUTIONS ON THEIR DIELECTRIC PERMITTIVITY AND CONDUCTIVITY

A.M. PASHAEV, E.M. KERIMOVA, S.N. MUSTAFAEVA

Institute of Physics NASA, Baku

solmust@gmail.com

 $TIIn_{1-x}Er_xSe_2$ (x=0; 0,001; 0,005; 0,01) solid solutions have been obtained by direct synthesis method from initial elements. By X-ray method there have been determined crystallographic parameters of $TIIn_{1-x}Er_xSe_2$ crystals. It is shown that with the increase of Eb concentration in the crystals the unit cell parameters *a* and *c* decrease. There have been measured dielectric characteristics of Erdoped $TIInSe_2$ crystals. It is found that doping of $TIInSe_2$ crystals by erbium leads to decrease in the values of the dielectric permittivity and the electrical conductivity, not having a substantial effect on the behavior of temperature dependences of given characteristics and phase transitions temperatures. The density of states at the Fermi level; the average time of charge carrier hopping between localized states, average hopping distance, scattering of trap states near the Fermi level have been evaluated for crystals of $TIIn_{1-x}Er_xSe_2$ solid solutions.

Keywords: chalcogenides, semiconductors, solid solutions, unit cell parameters, dielectric permittivity, specific electric conductivity, phase transition

PACs: 71.20.Eh, 71.20.Nr72.15.Eb, 72.15.Rn, 72.20.Ee, 72.20.Jv, 72.30.+q

TlInSe₂ ternary compound belongs to the great group of $TlA^{III}B_2^{IV}$ (A=In, Ga, B= S, Se, Te)-typed semiconductors-segnetoelectrics has the interesting set of physical properties both scientifically and practically. Most of this group crystals are layered that leads to the strong anisotropy of their physical characteristics. Layered packets can be shifted easily with respect to each other that brings about to the advent of polytype modifications and as a result the substantial influence of production method and external effects on their properties [1,2]. For some of this family with the temperature change the sequence of structural phase transitions due to the presence of longperiod commensurate and incommensurate modulated superstructures have been observed [3,4]. There have been a number of works in which the investigation results of various physical properties of given crystals owing to the temperature and anomalies on the curves of these dependences are revealed that are indicative of phase transitions in TlA^{III}B^{IV}-typed compounds [5-7]. While investigating thermal capacity and crystallographic parameters of TIInSe₂ crystals the authors [6-7] found out phase transitions at T₁=135K and T₂=185K and suppose that these transitions are due to the modulated structure. Although in [8] by investigating TlInSe₂ crystal thermal capacity within temperatures 42÷300K no anomalies on the curve $C_0 = f(T)$ are found out. This family crystals are of significant practical interest for optoelectronics as they are optically active and have high photosensitivity within wide spectral range.

It is known that composition change by various element doping and creating solid solutions has a significant influence on physical properties [9-12]. In [9,10] there have been presented the results of influence of Eb-doping on the physical properties of TlGaS₂ and TlGaSe₂ crystals. It is shown that partial substitution of Ga by Er leads to the decrease of dielectric permittivity, specific conductivity and to the increase of charge carrier concentration in forbidden band.

It is of great interest to establish how $TIInSe_2$ compound doping affects on its physical properties. Therefore, the aim of the given work is to investigate structural and dielectric characteristics of $TlIn_{1-x}Er_xSe_2$ system due to the temperature, frequency and composition.

 $TIIn_{1-x}Er_xSe_2$ solid solutions have been obtained by direct synthesis method from initial elements taken in stoichiometric relations by their immediate alloying in vacuum up to 10-3Pa. From TlInSe2-based obtained samples TlIn_{1-x}Er_xSe₂ single crystals are growth by using Bridgman method. X-ray diffraction study of TlIn_{1-x}Er_xSe₂ crystals was carried out on X-ray diffractometr DRON-3 with using CuK_a monochromatic radiation. Registration of diffraction spectra was made out automatically in step-bystep regime with 0.03° along 20. The calculations of unit cell parameters are conducted on the base of recorded diffraction patterns using the method of Rietveld analysis with Fullprof program packet. Measurements of dielectric constant (ε) and electric conductivity (σ) were carried out by method of plane condensator by digital meter E-7-20 at frequencies 10³-10⁶ Hz within temperature range 85-300 K. The temperature was controlled by differential chromelcopel thermocouple and multipurpose digital voltmeter. There has been used the method of continuous quazi-static heating at a rate of ~ 0.5 K/min for measurements. Measurement accuracy of temperature is 0.1-0.2 K. Error of dielectric characteristics measurements is $\sim 0.5\%$.

patterns diffraction From of mono-and polycrystalline samples of TlIn_{1-x}Er_xSe₂ it was found that the obtained $TIIn_{1-x}Er_xSe_2$ crystals (x=0;0.001; 0.005; 0.01) are homogenous. It was shown that TlIn_{1-x}Er_xSe₂ doped by Er crystallizes into the structure with space group D_{4h}^{18} -14/mcm. On the base of obtained roentgenograms there have been calculated unit cell parameters a and c of crystals under investigation depending on the composition. Calculation results are shown in Fig.1. It is seen that the partial substitution of In by Er brings about the decrease of unit cell parameters. In Fig.2 there have been presented temperature dependences of dielectric permittivity of TlIn₁₋ _xEr_xSe₂ crystals at the frequency of 1 MHz. The dependences within the phase transitions for the first and fourth compositions (TIInSe₂ and TIIn_{0.99}Er_{0.01}Se₂) have been shown in the upper left corner of Figure 2.

Fig.1 Concentration dependences of TlIn_{1-x}Er_xSe₂ unit cell parameters

Fig.2 Temperature dependences of dielectric permittivity of TlIn_{1-x}Er_xSe₂ crystals: 1 - x = 0; 2 - x = 0.001; 3 - x = 0.005; 4 - x = 0.01.

It is seen that the partial substitution of In by Er leads to the slight decrease of magnitude ε and does not affect on the view of temperature dependence and anomaly positions related to the phase transitions of the second kind of "commensurate- noncommesurate phase" that are characteristic of given compound [5].

- N.A. Borovoy Physics of Solid State. 2009.V. 51. No 11. P. 2229-2232
- [2] O.B. Plush, A.U Sheleg. Crystallography reports. 1999. V. 44. No 5. P. 873-877
- [3] D.F. McMorrow Journal of Physics: Condensed Matter. 1990. V. 2. No 16. P. 3699-3703
- [4] A.U. Sheleg, O.B. Plush Physics of Solid State. 1994.V. 36. No 1. P. 226-230
- [5] A.U. Sheleg, A.G. Hurtavy, S.N. Mustafaeva, E.M. Kerimova Physics of Solid State. 2011.V. 53. No 3. P. 443-445
- [6] O.Z.Alekperov, M.A.Aljanov, E.M. Kerimova Turkish Journal of Physics. 1998. V. 22. No 11. P. 1053-1058
- [7] V.A. Aliev, M.A. Aljanov Inorgan.Materials. 1998.
 V. 34. No 3. P. 274-276
- [8] K.K. Mamedov, A.M. Abdullaev, E.M. Kerimova PSS(a). 1986. V. 94. No 1. P. 115-119

At all studied frequencies the *ac* - conductivity of the Er-doped TlInSe₂ crystals (Figure 3) varies according the law $\sigma_{ac} \sim f^{0.8}$, characteristic of hopping conduction through localized states near the Fermi level [13]. In terms of Mott theory, we calculated the density of states at the Fermi level from the measured experimental values of the conductivity $\sigma_{ac}(f)$. Calculated values of N_F for TlIn_{1-x}Er_xSe₂ (x = 0.005 and 0.01) single crystals were equal to $8 \cdot 10^{17}$ and $1.2 \cdot 10^{18}$ eV⁻¹·cm⁻³, correspondingly. The theory of ac hopping conductivity provides an opportunity to determine the average distance R and time τ of charge carrier hopping from one localized state to another. Calculated values of $\boldsymbol{\tau}$ and R for both $TlIn_{1-x}Er_xSe_2$ (x = 0.005 and 0.01) single crystals were equal to $5,7\cdot10^{-2}$ µs and 320 Å, correspondingly. We estimate also energetic scattering of trap states near the Fermi level: $\Delta E = 0.018$ eV for $TlIn_{1-x}Er_xSe_2$ crystals with x = 0.005 and 0.012 eV for x =0.01.

Fig. 3. AC-conductivity of TlInSe₂ (curve 1) and TlInSe₂:Er (1 mol % Er) (curve 2) vs frequency at T = 300 K.

- [9] S.N. Mustafaeva, M.M. Asadov, E.M. Kerimova, N.Z. Gasanov Inorganic Materials. 2013. V. 49. № 12. P. 1175–1179
- [10] С.Н. Мустафаева, М.М. Асадов, Э.М. Керимова ФТТ. 2013. Т. 55. № 12. С. 2346–2350
- [11] А.М.Пашаев, С.Н. Мустафаева, Э.М. Керимова Ученые записки Национальной Академии Авиации. 2013. Т. 15. № 4. С. 56-64
- [12] А.М.Пашаев, С.Н. Мустафаева, Э.М. Керимова, Н.З. Гасанов Ученые записки Национальной Академии Авиации. 2014. Т. 16. № 3. С. 29 - 37
- [13] N. Mott and E. Davis, Electron processes in noncrystalline materials, Clarendon Press, Oxford, 1971. 472 p.