TIGa1-xDyxSe2 BƏRK MƏHLULLARININ ELEKTRİK VƏ OPTİK XASSƏLƏRİ

HÜSEYNOVA KƏMALƏ MÜSƏLLİM

Azərbaycan Milli Elmlər Akademiyası, H.M. Abdullayev adına Fizika İnstitutu, Bakı, Az 1143, H. Cavid, 131 <u>kama.mag@rambler.ru</u>

TlGa_{1-x}Dy_xSe₂ (x = 0; 0,01; 0,03) kristalları sintez edilmişdir. Alınan kristallarda yükdaşıyıcıların daşınma mexanizmi öyrənilmişdir. Göstərilmişdir ki, TlGa_{1-x}Dy_xSe₂-də *x*-in artmasi ilə dəyişən cərəyanın keçiriciliyi, Fermi səviyyəsi yaxınlığında lokallaşmış səviyyələrin sıxlığı, sıçrayışların orta məsafəsi və onlara sərf olunan zaman artır. $77 \div 300$ K intervalında TlGa_{1-x}Dy_xSe₂ (x=0; 0,01; 0,03) monokristalların optik udulma sərhəddi tədqiq edilmişdir. dE_{ab}/dT temperatur əmsalı $80 \div 120$ K intervalında TlGaSe₂ üçün $-3 \cdot 10^{-4}$ eV/K, TlGa_{0.99}Dy_{0.01}Se₂ üçün isə $\approx -7 \cdot 10^{-4}$ eV/K təşkil edir. TlGa_{0.99}Dy_{0.01}Se₂ üçün qadağan olunmuş zonanın eninin qısadalğalı yer dəyişməsi TlGaSe₂ nəzərən 90 meV təşkil edir. Qadağan olunmuş zonanın eninin Dy-un konsentrasiyasından asılılığı TlGaSe₂

Açar sözlər: bərk məhlullar, sıçrayışlı elektrik keçiriciliyi, optik udulma sərhəddi. PACS: 71.20.Eh, 72.20.Jv, 72.40.+W, 71. 35. Cc.

GİRİŞ.

TlGaSe₂ kristalları praktiki tətbiq nöqteyi nəzərindən çox cəlbedici materialdır. TlGaSe₂ monokristalı laylı quruluşa malikdir. Yüksək fotohəssaslığı, yaddaş effekti ilə maraqlıdır, həmçinin bu kristalda faza keçidləri müşahidə edilir [1-3]. Bu kristalın geniş tədqiq olunmasına baxmayaraq, tərkibində nadir torpaq elementi olan TlGaSe₂ nümunələri az öyrənilmişdir. Belə əvəzetmələr fiziki xassələrin, parametrlərin kəskin dəyişməsinə və nizamlı dayanıqlı fazaların yaranmasına səbəb olur.

Hazırki işdə TlGa_{1-x}Dy_xSe₂ bərk məhlullarında dəyişən elektrik sahəsində radiotezlik diapazonunda elektrik keçiriciliyinin mexanizmi və optik udulma sərhəddi müəyyən edilmişdir.

TƏCRÜBİ HİSSƏ.

İlkin komponent olaraq Tl (Tl 00), Ga (Ga 5N), Se (OCU 15-2), Dy (99.99%) maddələrindən istifadə edilmişdir. TlGa_{1-x}Dy_xSe₂ (x=0; 0,01; 0,03) nümunələri stexiometrik ölçüdə götürülmüş elementlər vakuumlaşmış (10⁻³ Pa) kvars ampulalarda 1000±5 K temperaturda 5-7 saat ərzində əridildikdən sonra sintez edilmışdır. Keyfiyyətli monokristallar Bricmen metodu ilə sintez edilmiş TlGa_{1-x}Dy_xSe₂ nümunələrindən alınmışdır. TlGa_{1-x}Dy_xSe₂ nümunələrindən alınmışdır. TlGa_{1-x}Dy_xSe₂ nümunələrinin elektrik ölçüləri 1920 Precision LCR Meter (IET LABS. INC. USA) cihazında ölçülmüşdür.

Elektrik ölçüləri üçün TlGa_{1-x}Dy_xSe₂ (x = 0; 0,01; 0,03) nümunələri müstəvi kondensator kimi hazırlanmışdır, elektrod olaraq gümüş pastası götürülmüşdür. TlGa_{1-x}Dy_xSe₂ kristallarının elektrik keçiriciliyi "*c*" oxuna perpendikulyar istiqamətdə ölçülmüşdür.

 $80 \div 220$ mkm qalınlıqlı nümunələrin elektrik ölçmələri 298 K-də aparılmış, dəyişən elektrik sahəsinin tezliyinin diapazonu isə $20 \div 10^6$ Hz təşkil etmişdir. Nümunələrə tətbiq olunan elektrik sahəsinin gərginliyi 1 V olmuşdur. Bu gərginlik öyrənilən nümunələrin Volt-Amper xarakteristikasının omik oblastına uyğun gəlir. Nümunələrin elektrik tutumunun ölçmələri ± 0.01 pF dəqiqliyilə aparılmışdır, elektrik keyfiyyəti faktorunun Q ($Q = 1/tg\delta$) ölçmə səhvi isə 0.001% təşkil etmişdir.

TlGa_{1-x}Dy_xSe₂ (x=0; 0,01; 0,03) nümunələrinin optik udulma spektrini öyrənmək üçün monokristallardan qalınlığı 20 mkm-dən 100 mkm-dək nazik təbəqə qoparılırdı. Işıq nümunəyə kristalloqrafik "*c*" oxu istiqamətində yönəldilib, yəni laylara perpendikulyar salınırdı. Optik udulma spektrlərinin tədqiqi 77÷300K intervalında MDR-23 monoxromatoru və UTREKS kriostatı vasitəsilə aparılmışdır.

NƏTİCƏLƏR VƏ ONLARIN MÜZAKİRƏSİ.

TlGa_{1-x}Dy_xSe₂ (x = 0; 0,01; 0,03) nümunələrinin *ac*-keçiriciliyinin tezlikdən asılılığı öyrənilmişdir və şəkil 1-də verilmişdir. Şəkil 1-dən göründüyü kimi TlGaSe₂ kristalında Dy miqdarının artması ilə *ac*keçiriciliyinin qiyməti də uygun olaraq artır.

Şəkil 1. TIGa1-xDyxSe2: x = 0 (1), 0,01 (2) və 0,03 (3), T=298K-də kristalların keçiriciliyinin tezlikdən asılılığı.

TlGaSe₂ kristalı üçün $\sigma_{ac}(f)$ asılılığında 2 sahə müşahidə olunur.Tezliyin aşağı qiymətlərində $\sigma_{ac} \sim f^{0.6}$, sonra isə ($f \ge 10^4$ Hz)-də $\sigma_{ac} \sim f^{0.8}$ qanunu ilə artırdı. TlGa_{1-x}Dy_xSe₂ kristalı üçün isə $\sigma_{ac}(f)$ asılılığında 3 sahə müşahidə olunur: birinci hissə $\sigma_{ac} \sim f^{0.5 \cdot 0.6}$, sonradan isə $\sigma_{ac} \sim f^{0.8}$ qanunu ilə əvəz olunurdu. Tezliyin 1 MHs-ə qədər sonrakı artması nəticəsində $\sigma_{ac} \sim f^{l,2}$ superxətti sahə müşahidə edildi. Alınan $\sigma_{ac} \sim f^{0.8}$ qanunu yükdaşıyıcıların Fermi səviyyəsinin yaxınlığında lokallaşmış hallarda sıçrayışlı hərəkət mexanizmini göstərir [4,5].

Cədvəlin 2-ci sütununda (Δf)-in dəyişmə intervalı göstərilir. Bu tezlik intervalında öyrənilən kristallarda $\sigma_{ac} \sim f^{0.8}$ asılılığı müşahidə olunmuşdur. TIGa_{1-x}Dy_xSe₂ üçün $\sigma_{ac}(f)$ -in təcrübədən tapılan qiymətlərindən Fermi səviyyəsi yaxınlığında lokallaşmış hallar sıxlığı (N_F) Mott modelinə görə aşağıdakı düsturdan hesablanmışdır:

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_{\rm F}^2 a^5 f \left[\ln \left(\frac{v_{\rm ph}}{f} \right) \right]^4 (1)$$

Burada *e* - elektrik yükü, *k* - Boltzman sabiti, *N_F* - Fermi səviyyəsi yaxınlığındakı hallar sıxlığı, *a* = $1/\alpha$ -lokallaşma radiusu, α isə lokallaşmış yük daşıyıcının dalğa funksiyasının sabiti $\psi \sim e^{-\alpha r}$; *v_{ph}*- fonon tezliyidir. Bərk məhlullar üçün *N_F* hesablayanda lokallaşmış radiusunun qiyməti TlGaSe₂-də kimi *a*=34 Å, *v_{ph}* isə 10^{12} Hs götürülmüşdür [4,6].

Cədvəl.

Kristalın tərkibi TlGa _{1-x} Dy _x Se ₂	Δ <i>f</i> , Hs	<i>N</i> _F , 10 ¹⁸ eV ⁻¹ sm ⁻³	τ, s	<i>R</i> , Å	ΔE , eV
x = 0	$10^{4}-10^{6}$	1,98	10-6	234	1,9×10 ⁻²
<i>x</i> = 0,01	$10^{3}-10^{5}$	2,97	10-5	273	8×10 ⁻³
x = 0,03	$10^{3}-10^{4}$	7,14	10-4	312	2,2×10-3

TlGa_{1-x}Dy_xSe₂ bərk məhlulların Mott modelinin çərçivəsində hesablanmış parametrləri.

Mott modelinin çərcivəsində hesablanmış parametrlərin qiymətlərindən görünür ki, Dy-un TlGa_{1-x}Dy_xSe₂-də konsentrasiyası artdıqca, Fermi səviyyəsinin yaxınlığında yerləşən hallar sıxlığı artır.

Dəyişən cərəyanda sıçrayışlı keçiricilik nəzəriyyəsinə görə siçrayışlarin orta məsafəsi (*R*) aşağıdakı ifadə ilə təyin edilir [5].

$$R = \frac{1}{2\alpha} \ln \left(\frac{v_{ph}}{f} \right).$$
 (2)

Burada $f - f^{0.8}$ qanunu müşahidə olunan sahənin orta tezlik qiymətidir. İfadə (2)-dən hesablanmış sıçrayışların orta məsafəsi (*R*) TlGa_{1-x}Dy_xSe₂ kristalındakı yükdaşıyıcıların lokalizasiya mərkəzlərinin məsafəsindən təxminən 8-9 dəfə çoxdur.

Hesablanmış *R*-in qiyməti sıçrayışların orta vaxtı τ -nu (3) ifadəsinin köməkliyi ilə təyin etməyə imkan verir:

$$\tau^{-1} = v_{ph} \cdot exp(-2\alpha R) \tag{3}$$

TlGa_{1-x}Dy_xSe₂-də Fermi səviyyəsi yaxınlığında lokallaşmış halların energetik yayılmasını (4)-ifadəsinə əsasən qiymətləndirmək olar [5].

$$\Delta E = \frac{3}{2\pi R^3 \cdot N_F} \tag{4}$$

Cədvəldən görünür ki, Dy-un konsentrasiyası artdıqca TlGa_{1-x}Dy_xSe₂ bərk məhlulunda energetik zolağı ΔE daralır, Fermi səviyyəsi yaxınlığında lokallaşmış halların sıxlığı, sıçrayışların orta məsafəsi və sərf olunan zaman artır. Beləliklə, müəyyən edilmişdir ki, Dy–un TlGaSe₂-nin matrisasına daxil edilməsi onun fiziki xassələrini modifikasiya edir.

TlGaSe₂ və TlGa_{0,99}Dy_{0,01}Se₂ monokristallarının optik udulma spektrləri 77÷300K intervalında tədqiq olunmuşdur. Öyrənilən tərkiblər üçün (αhv)² düşən süanın enerjisinin asılılıq əyrisindən (hv) düz xətti hissəsini ekstrapolyasiya edərək qadağan olunmuş zonanın eni (E_g) tapılmışdır (α – udma əmsalı). Aşağı temperaturlarda TlGa_{0,99}Dy_{0,01}Se₂-də udma sərhəddi yaxınlığında eksitonun əmələ gəlməsi müşahidə olunmur. Temperatur əmsalı dE_g/dT 80÷120K intervalında TlGaSe₂ üçün ≈-3·10⁻⁴eV/K, TlGa_{0,99}Dy_{0,01}Se₂ üçün isə ≈-7·10⁻⁴eV/K təşkil edir. TlGa_{0,99}Dy_{0,01}Se₂ üçün udma əmsalı TlGaSe₂-yə nisbətən nəzərə çarpacaq dərəcədə, yəni təxminən 2 dəfə yüksəkdir. 120÷300 K intervalında bütün tərkiblər üçün dE_g/dT ≈ -2.1·10⁻⁴ eV/K təşkil edir.

Şəkil 2-də TlGaSe₂ və TlGa_{0,99}Dy_{0,01}Se₂ kristallarının qadağan olunmuş zonasının temperaturdan asılılığı verilmişdir.

Şəkil 2. TIGaSe₂ (1) və TIGa_{0,99}Dy_{0,01}Se₂ (2) kristallarının qadağan olunmuş zonasının temperatur asılılığı.

TIGa1-xDyxSe2 BORK MOHLULLARININ ELEKTRİK VƏ OPTİK XASSOLORİ

TlGa_{0.99}Dy_{0.01}Se₂ üçün qadağan olunmuş zonasının eninin qısadalğalı yer dəyişməsi TlGaSe₂-yə nəzərən təxminən 90 meV təşkil edir. Məsələn 80 K temperaturda TlGaSe₂ üçün $E_8 = 2,192$ eV olduğu halda TlGa_{0.99}Dy_{0.01}Se₂ üçün -2,287eV olur. Yəni 12% gallium atomlarının Dy atomları ilə əvəz edilməsi TlGaSe₂ kristalları üçün nəzərə çarpacaq dərəcədə qadağan olunmuş zonanın enini artırır. E_g -nin Dy-un konsentrasiyasından asılılığı TlGa_{1-x}Dy_xSe₂ üçün xətti xarakter daşıyır.

- С.Н. Мустафаева, С.Д. Мамедбейли, М.М.Асадов, И.А. Мамедбейли, К.М. Ахмедли. ФТП, 30, 1996, 2154–2158.
- [2] А.У. Шелег, К.В. Иодковская, Н.Ф. Курилович. ФТТ, 40, 1998, 1328–1331.
- [3] О.Б. Плющ, А.У. Шелег. Кристаллография. 44, 1999, 873–877.
- [4] С.Н. Мустафаева, В.А. Алиев, М.М. Асадов. ФТТ, 40, 1998, 48–51.
- [5] Н.Мотт, Э.Дэвис. Электронные процессы в некристаллических веществах: пер. с англ. 2-е изд., перераб. и доп. В 2 томах. М.: Мир, 1982, т. 1, 368 с., т. 2, 664 с.
- [6] К.Р.Аллахвердиев, Е.А.Виноградов, Р.Х.Нани и др. Колебательный спектр кристаллов TlGaS₂, TlGaSe₂ и β-TlInS₂. В кн.: Физические свойства сложных полупроводников. Баку: Элм. 1982, с. 55- 63.

K.M. Huseynova

ELECTRIC AND OPTICAL PROPERTIES OF TIGa1-xDyxSe2 SOLID SOLUTIONS

TlGa_{1-x}Dy_xSe₂ crystals (x = 0; 0.01 and 0.03) are synthesized. The hopping mechanism of charge transfer is established in the obtained samples. It is shown that in TlGa_{1-x}Dy_xSe₂ the alternating current conductivity, the density of localized states near the Fermi level, the average distance and duration of charge carrier jumps increase with increasing x. The optical absorption edge of TlGa_{1-x}Dy_xSe₂ single crystals is studied in the temperature range of 77–300 K. The temperature coefficient dE_g/dT in the temperature range of 80-120 K for TlGaSe₂ is $-3 \cdot 10^{-4} \text{ eV/K}$, and for TlGa_{0.99}Dy_{0.01}Se₂ is $\approx -7 \cdot 10^{-4} \text{ eV/K}$. The short-wave shift of E_g for TlGa_{0.99}Dy_{0.01}Se₂ is respect of TlGaSe₂ is about 90 meV. The dependence of E_g on the concentration of Dy in the studied compounds TlGaSe₂<Dy> is linear.

К.М. Гусейнова

ЭЛЕКТРИЧЕСКИЕ И ОПТИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ TIGa_{1-x}Dy_xSe₂

Синтезированы кристаллы TlGa_{1-x}Dy_xSe₂ (x = 0; 0,01 и 0,03). Установлен прыжковый механизм переноса заряда в полученных образцах. Показано, что в TlGa_{1-x}Dy_xSe₂ с увеличением x проводимость на переменном токе, плотность локализованных состояний вблизи уровня Ферми, среднее расстояние и время прыжков носителей заряда увеличиваются. В интервале температур 77÷300 К исследован край оптического поглощения монокристаллов TlGa_{1-x}Dy_xSe₂. Температурный коэффициент dE_g/dT в интервале температур 80÷120 К составляет для TlGaSe₂ - $3 \cdot 10^{-4}$ эВ/К, а для TlGa_{0.99}Dy_{0.01}Se₂ $\approx -7 \cdot 10^{-4}$ эВ/К. Коротковолновое смещение E_g у TlGa_{0.99}Dy_{0.01}Se₂ по отношению к TlGaSe₂ составляет около 90 мэВ. Зависимость E_g от концентрации Dy в исследованных составах TlGaSe₂<Dy> имеет линейный вид.

Qəbul olunma tarixi: 20.06.2019