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It is shown that the dimensions of the crystal play an essential role in the excitation of an unstable wave with a certain 
frequency and growth rate, and it is possible to regulate the appearance of current oscillations with a magnetic field. The values 
of the frequency of the current oscillation are found. The value of the external electric field and the frequency of current 
oscillation are determined at the initial point.  
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INTRODUCTION 

 
A simple way to convert electromagnetic energy 

using semiconductors that do not contain any electron-
hole junctions is the phenomenon of electrical 
instability. The current-voltage characteristic (CVC) of 
such a sample is linear. Generation and amplification of 
electromagnetic oscillations, current stabilization, 
"memory" effect, etc. are possible. Instability depends 
on the characteristics of the solid. For example, in a 
GaAs crystal, the I–V characteristics and the energy 
spectrum of charge carriers are described by the 
following graphs 

 

 
Fig. The dependence of the current density on the electric       
        field is an N-shaped volt-ampere characteristic. 

 
Field strength is a multivalued function of current 

density. The energy spectrum of electronic gallium 
arsenide is two-valley. With the help of an electric field, 
charge carriers are heated in the sub-zone with high 
mobility, as a result, having acquired a sufficiently high 
energy, they pass into the sub-zone with higher energy 
and low mobility.  

The effective mass of charge carriers in GaAs are 
important 𝑚𝑚𝑎𝑎 = 0,072𝑚𝑚0 b 0m 1,2m= , and the 

mobility of charge carriers in the valleys are a
a

e
m
τµ =

and b
b

e
m
τµ =   (𝜇𝜇𝑎𝑎 ≪ 𝜇𝜇𝑏𝑏 , µ  is the mobility of charge 

carriers). We will designate valleys 1-a, 2-b.  
The total current has the form  
 
  𝑗⃗𝑗 = 𝑒𝑒𝑛𝑛𝑎𝑎𝜇𝜇𝑎𝑎𝐸𝐸+ 𝑒𝑒𝑛𝑛𝑏𝑏𝜇𝜇𝑏𝑏𝐸𝐸 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝐸𝐸)𝐸𝐸    (1) 

 

𝑛𝑛 = 𝑛𝑛𝑎𝑎 + 𝑛𝑛𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0       (2) 
 

Instability in GaAs in 1963 was discovered 
experimentally by the English physicist J. Gann [1]. In 
theoretical works [2-3], the Gunn effect is investigated 
in the presence of an external electric field. All 
theoretical studies are calculated without carrier 
diffusion. However, in the scientific literature there are 
no theoretical works devoted to theoretical studies of 
the Gunn effect taking into account intervalley 
scattering based on the solution of the Boltzmann 
kinetic equation. In this theoretical work, we will 
calculate the frequencies of current oscillations in the 
presence of a strong magnetic field by applying the 
Boltzmann equation, taking into account the intervalley 
scattering of charge carriers.  

 
𝜇𝜇𝐻𝐻0 >> 𝑐𝑐       (3) 

 
 ( 0H is intensity of a constant magnetic field, 

c  is speed of light) 
 
THEORY 

 
In a stationary state, the electric field is 

independent of time. Under the influence of an electric 
field for the current to be stationary, electrons must be 
scattered on any lattice inhomogeneities (vibrations of 
atoms or crystal defects). Under the action of external 
forces, the state of charge carriers cannot be described 
by the equilibrium distribution function 0f ( )ε , but it 
is necessary to introduce a nonequilibrium distribution 
function f ( k ,r )

  , which is the probability that an 
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electron with a wave vector (quasimomentum k


 ) is 
near a point. The distribution function f ( k ,r )

   is found 
from the kinetic Boltzmann equation. It is assumed that 
the distribution function can change under the influence 
of two reasons, either under the influence of external 
factors, or under the influence of collisions of electrons 
with lattice vibrations (phonons) and crystal defects. 

Then, in the considered stationary state, these 
factors compensate each other.  

 
�𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡
�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ �𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡
�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 0       (4) 
 
In the presence of external electric and magnetic 

fields, equation (4) has the form  
 
𝑉𝑉�⃗ 𝛻𝛻�⃗ 𝑓𝑓 + 𝑒𝑒

ℏ
�𝐸𝐸 + 1

𝑐𝑐
�𝑉𝑉�⃗ 𝐻𝐻��⃗ ��𝛻𝛻�⃗𝑘𝑘�⃗ 𝑓𝑓 = �𝜕𝜕𝑓𝑓

𝜕𝜕𝑡𝑡
�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

      (5) 
 

𝑉𝑉�⃗ =
1
ℏ 𝛻𝛻𝑘𝑘�⃗ 𝜀𝜀(𝑘𝑘�⃗ ) 

 
Neglecting the anisotropic one, we solve the 

equation. We assume that for valley “a” with 
intravalley, and for valley “b”, intravalley scattering 
prevails over intervalley one. Then the Boltzmann 
equations for the valley "a" and "b" can be written in 
the following form   

 
         �𝜕𝜕𝑓𝑓

𝑎𝑎

𝜕𝜕𝑡𝑡
�
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ �𝜕𝜕𝑓𝑓
а

𝜕𝜕𝑡𝑡
�
𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= 0              (6) 

 
b b

внеш внутридол

f f 0
t t

   ∂ ∂
+ =      ∂ ∂   

                  (7) 

 
In [2] Davydov showed that in a strong electric 

field the distribution function can be represented in the 
form  

𝑓𝑓 = 𝑓𝑓0 + 𝑃𝑃�⃗

𝑝𝑝
𝑓𝑓1      (8) 

 
( P


-momentum) 
Then for the valleys “a” and “b” we write  
 

𝑓𝑓а = 𝑓𝑓0а + 𝑃𝑃�⃗

𝑝𝑝
𝑓𝑓1а,   𝑓𝑓𝑏𝑏 = 𝑓𝑓0𝑏𝑏 + 𝑃𝑃�⃗

𝑝𝑝
𝑓𝑓1𝑏𝑏         (9)  

 
In [3], from solution (9), the distribution function 

bf  was found in the presence of an electric field 
 

𝑓𝑓0𝑏𝑏 = 𝐵𝐵𝑒𝑒−𝛼𝛼𝑏𝑏(𝜀𝜀−𝛥𝛥)2          (10)  
  

𝑓𝑓1𝑏𝑏 = −𝑒𝑒𝑚𝑚𝑏𝑏𝑙𝑙𝑏𝑏
𝑝𝑝

𝐸𝐸�⃗ 𝜕𝜕𝑓𝑓0
𝑏𝑏

𝜕𝜕𝜕𝜕
       (11) 

Here 
 

𝑙𝑙𝑏𝑏 = 𝜋𝜋ℏ4𝜌𝜌𝑢𝑢02

𝐷𝐷2𝑚𝑚𝑏𝑏
2𝑘𝑘0𝑇𝑇

, 𝛼𝛼𝑏𝑏 = 3𝐷𝐷4𝑚𝑚𝑏𝑏
5𝑘𝑘0𝑇𝑇

𝑒𝑒2𝜋𝜋2ℏ8𝜌𝜌2𝑢𝑢02𝐸𝐸2
       (12) 

 
bl - the length of the free path in the valley «b», D - 

deformation potential, T- grate temperature, 
p -the density of the substance, 0u - sound speed. 

It was shown in [2] that in strong electric and 
magnetic fields in the case of intravalley scattering, the 
function b

1f  has the form: 

𝑓𝑓1𝑏𝑏 = −𝑒𝑒𝑙𝑙𝑏𝑏𝑚𝑚𝑏𝑏
𝑝𝑝

𝜕𝜕𝑓𝑓0𝑏𝑏

𝜕𝜕𝜕𝜕
⋅
𝐸𝐸�⃗ +𝑒𝑒𝑙𝑙𝑏𝑏𝑐𝑐𝑐𝑐 �𝐸𝐸�⃗ 𝐻𝐻��⃗ �+�

𝑒𝑒𝑙𝑙𝑏𝑏
𝑐𝑐𝑐𝑐 �

2
𝐻𝐻��⃗ �𝐸𝐸�⃗ 𝐻𝐻��⃗ �

1+�
𝑒𝑒𝑙𝑙𝑏𝑏𝐻𝐻
𝑐𝑐𝑐𝑐 �

2    (13) 

 
𝑓𝑓0𝑏𝑏 = 𝐵𝐵𝑒𝑒−𝛼𝛼𝑏𝑏(𝜀𝜀−𝛥𝛥)2        (14) 

 
( B -normalization constant) 
 

𝛼𝛼𝑏𝑏 =
3𝐷𝐷4𝑚𝑚𝑏𝑏

5𝑘𝑘0𝑇𝑇�1+�
𝑒𝑒𝑙𝑙𝑏𝑏𝐻𝐻
𝑐𝑐𝑐𝑐 �

2
�

𝑒𝑒2𝜋𝜋2ℏ8𝜌𝜌2𝑢𝑢02�𝐸𝐸2+�
𝑒𝑒𝑙𝑙𝑏𝑏
𝑐𝑐𝑐𝑐 �

2
�𝐸𝐸�⃗ 𝐻𝐻��⃗ �

2
�
          (15) 

 
𝑓𝑓0𝑎𝑎 = 𝐴𝐴𝑒𝑒−𝛼𝛼𝑎𝑎𝜀𝜀2                              (16) 

 
We calculate the total current density  
 

𝚥𝚥 = 𝚥𝚥𝑎𝑎 + 𝚥𝚥𝑏𝑏          (17) 
 

 

( )

4
a

2
a

4 4
a a

2 2
a a

p22
4ma 3 7a a

a 12 3 2 3 2
aa a0

p p2 22
4m 4m6 5a a

a a0 0

e l Ae cHj f p dp E p e dp
el3 m 3 m

el elcp cpHp e dp EH p e dpH EH
c el H c el

α

α α

α
π π

∞ −

∞ ∞− −


 = = +  
 


      + +            

∫

∫ ∫



 

    

        (18) 

 

It can be written in bj


a similar way, only it is 
necessary to replace the index "a" with "b" and A with 
B. The integrals in (18) are calculated by the following 
formula (gamma function). 

n xdx

0

x e ( n 1)Γ
∞

− = +∫       (19) 

Applying formulas (19), we obtain expressions 
for the total current density of the expression 

 

( )1 2j E Eh h EhΣ Σ Σ = + + 
    

          (20) 
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( )

3 1 22 1 2 1 4
a a b 0

2
a aa

8nc m m m1
m m3 2l 3 4 H

α
Σ

Γ

−    
= ⋅ ⋅   

   
 

 
( )
( )1
7 44enc

H 3 4
Γ

Σ
Γ

=               (21) 

 

( )
( )

1 22 1 4
a a b

2 1 2
0a

3 24e nl m
3 4 m3 2m

Γα
Σ

Γ
 

= ⋅ ⋅ 
 

 

 
After calculating ( 1 2, ,Σ Σ Σ ), the frequencies of 

the current oscillation can be calculated. In work [4-5], 
we calculate the frequency of the current oscillation in 
the presence of a weak magnetic field ( H cµ >> ) 

To calculate the oscillation frequency, we find 
from Maxwell's equation the current density  

 
c 1 Ej rotH

4 4 tπ π
′∂′ ′= +

∂




        (22) 

 

and we will equate the expressions of currents (19-22), 
as a result we will receive the following expressions  

( )1 2
с 1 ErotH E Eh h Eh

4 4 t
Σ Σ Σ

π π
′∂  ′ + = + + ∂

     
      

              (23) 
 

We have chosen the following coordinate system  
 

0 0 0 0H hH ,E hЕ= =
  

     (24) 
 

To determine the variable part of the magnetic 
field, we will use the Maxwell equations 

 
H ccrotE ,H kE
t ω
′∂  ′ ′ ′= − =  ∂


  

        (25) 

 
Considering 𝐻𝐻′ ∼ 𝑒𝑒𝑖𝑖�𝑘𝑘�⃗ 𝑥𝑥−𝜔𝜔𝜔𝜔� and 𝐸𝐸′ ∼ 𝑒𝑒𝑖𝑖�𝑘𝑘�⃗ 𝑥𝑥−𝜔𝜔𝜔𝜔� 

from (24), taking into account (25), we obtain the 
following dispersion equations for determining the 
frequency of current oscillations 

 
 

( )

( )

2 2
1 0 y 2 0 z 2 0 0

2

1 0 z

E i H E h H E 2 E H c kE

iccE E kE k 0
4

Ω Σ Σ ω Σ

Σ
π

 ′ ′ ′ ′+ − − + 

 
′ ′+ − = 

 

  

      (26) 

Writing down the components of the vector equation (26), we obtain the following three equations  
2 2 2
1 x 2 y 3 z

2 2 2
1 x 2 y 3 z

2 2 2
1 x 2 y 3 z

E E E 0

E E E 0

E E E 0

Ω Ω Ω

Ξ Ξ Ξ

Θ Θ Θ

 ′ ′ ′+ + =

 ′ ′ ′+ + =


′ ′ ′+ + =

          (27) 

Here: 
2 2

2 2 x
1

ic k
,

4
Ω Ω

π
= −  

2
x y2

2 1 0 2 0 0 z
ic k k

H 2 E H k c ,
4

Ω Σ ω Σ
π

= + −  
2

2 x z
3 1 0 x 2 0 0 y

ic k k
E ck 2 E H ck ,

4
Ω Σ Σ

π
= − −  

2
x y2

1 2 0 0 z
ic k k

2 E H ck ,
4

Ξ Σ
π

= − −  
2 2

y2 2
2

ic k
,

4
Ξ Ω

π
= −  

2
y z2

3 2 0 0 x 1 0 y
ic k k

2 E H ck E ck ,
4

Ξ Σ Σ
π

= + −            (28)         

2
2 x z
1 2 0 0 y

ic k k
2 E H ck ,

4
Θ Σ

π
= −  

2
y z2

2 2 0 0 x
ic k k

2 E H ck ,
4

Θ Σ
π

= − −  
2 2

2 2 2 z
3 2 0 1 0 z

ic kH E ck .
4

Θ Ω Σ ω Σ
π

= − + −  

 
We obtain the following dispersion equations for 

determining the frequency of the current oscillation 
from the solution of the system of equations (28)  

 
22

2 2 2 2z z
2 2

z x

2ck L16 i2
ck L
ΣΩ π Σ π

Σ

   = − +  
   

    (29) 

 
z xL ,L - corresponding sample lengths. 

Here 
2 2ic k i

4 4
ωΩ Σ

πω π
= + +         (30) 

 
When deriving the dispersion equation, we used 

the inequality for the electric field  

0 charE uE>> , 
2 2 2

20 y
2 2 2

x z

16 k
u

c k k

π σ
=

∆
    (31) 

2 2 1 2 2 x
2 20 20

0

E
E

Σ Σ α Σ= = ⋅
∆

 

1 24 3
0 a b 0

x 2 2 8 2 2
0

3D m m m k T
E

e uπ ρ

 
=   
 

 

x yL L=  
By supplying (30) to (31), we obtain the following 

equations for determining the frequency of the current 
oscillation  

2
2 2 22 z

x

4 L 14 i i 4 c k 0
L 2

π Σ
ω π Σ ω π

  − − + + =  
   

 (32) 
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From solution (33), taking into account (32), we 
easily obtain:  

3
2 z

0
x

8 L ,
L

π Σ
ω =  1 2 ckω π=   (33) 

 
Formulas (33) for the frequency of the current 

oscillation and the growth rate of the oscillation are 
obtained at  

x

0

E
ck 2

E
π Σ>>        (34) 

e.g 

0 x
2E E

ck
π Σ

>>       (35) 

Comparison of (35) with (31) is in good 
agreement.  

 
DISCUSSION OF THE RESULTS 
 

The intervals of variation of the external constant 
electric field are determined by applying the kinetic 
equation in two-valley semiconductors of the GaAs 
type, at which radiation of electromagnetic energy 
occurs. Such an unstable state occurs in a sample, the 

dimensions of which are x yL L= , z x yL L ,L>> , the 

coordinate system 0 0zH hH=


, 0 0zE hE=


, 

0zH cµ >>  and, with a different coordinate system 

0 0 0 0 0 0 0 0 0 0E H ,E H E H cos , E H E H sinα α ⊥ = = 
   

, 
a different value of theoretical research is needed. It can 

be seen from the CVC graph that the point 
dj 0
dE

=  is 

the beginning of the oscillation, i.e. 1 0ω =  is 
increment. Considering 0ω ω= , 0 2ω πσ= .  

 
2 2

0 char 2
0

c kE E
uπ

= ⋅
∆

                   (36) 

 

( )

31 22 1 2
a 0 b

0 2
a

8nc m m m
u

m3 2 3 4 HΓ
 

= ⋅ 
 

    (37) 

 
With an increase in the magnetic field, the electric 

field increases in a square, and this can be used to 
regulate the instability. 
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