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ON THE EXACT SOLUTION OF THE CONFINED POSITION-DEPENDENT MASS

HARMONIC OSCILLATOR MODEL WITH THE KINETIC ENERGY OPERATOR
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Exactly-solvable confined model of the quantum harmonic oscillator under the external gravitational field is studied.
Confinement effect is achieved thanks to the effective mass changing with position. Nikiforov-Uvarov method is applied for
solving exactly corresponding Schrodinger equation. Analytical expressions of the wavefunctions of the stationary states and

energy spectrum are obtained.
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1. INTRODUCTION

Quantum systems with position-dependent
effective mass have been the subject of many
attracting studies in recent years [1-4]. The
Schrodinger equation corresponding to such systems
with non-constant mass provides interesting and
useful solutions for the description of them. At the
same time, behavior of the quantum system influenced
from attached external field is also within the
attraction of the scientists working on this and related
research topics [5,6]. Main reason is that external field
attached to the quantum system under consideration
can thoroughly change its main properties. Then, such
an effect also can open for studying many of
previously hidden aspects regarding them.

In present paper, we study an oscillator model
that is wunder the influence of the external
homogeneous gravitational field. Already, same
model exhibiting confinement effect was studied in
detail and results have been published in [7]. Then,
taking into account importance of the appearance of
the external field, we decided to obtain more general
solutions by extending free motion in the confined
oscillator potential to the similar motion, but through
taking into account external homogeneous
gravitational field. We are able to obtain analytical
expressions of the wavefunctions corresponding to our
model under study as well as its energy spectrum. In
our studies, we preserved general definition of the
kinetic operator, which is still compatible with the
Galilean invariance. Correctness of the obtained
analytical expressions is proven via their correct
reduce to the known non-relativistic results under the
certain limit relations.

We structured our paper as follows: in Section 2,
basic known information is provided for the non-
relativistic quantum harmonic oscillator. Briefly,
analytical solutions of the Schrodinger equation for it
are presented within the canonical approach.
Analytical solutions cover both wave functions of the
stationary states of the quantum oscillator itself as
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well as same model but under the external
homogeneous gravitational field. It is shown that both
wave functions are expressed via the Hermite
polynomials, but wave function for the model
suppressed to the external homogeneous gravitational
field differs from free harmonic oscillator with the
shifted position x. Analytical expressions of the
energy spectrum of both models also have similar
behavior — both of them are equidistant. However,
energy spectrum of the model under the external
homogeneous gravitational field differs with some
shifted constant parameter that appears as a result of
the applied external field. It is shown that analytical
expression of the wave functions and energy spectrum
of the model with an applied external homogeneous
gravitational field easily recovers the model of the
non-relativistic  oscillator within the canonical
approach for case of the disappearance of the external
field. Section 3 is devoted to the confined position-
dependent mass harmonic oscillator model under the
homogeneous gravitational field. In order achieve the
confinement effect, we replaced constant effective
mass of the model under study with the effective mass
that varies with position x. Then, aiming to preserve
Hermiticity property of the Hamiltonian of the model,
we also replaced its kinetic energy operator with the
kinetic energy operator compatible with Galilean
invariance. Both analytical expressions of the wave
functions and energy spectrum of the confined
position-dependent mass harmonic oscillator model
with the Kkinetic energy operator compatible with
Galilean invariance and same model but under the
homogeneous gravitational field are presented here.
Final section contains some brief discussions and
possible limit relations between the models presented
here.
2. NON-RELATIVISTIC QUANTUM

HARMONIC OSCILLATOR WITHIN THE
CANONICAL APPROACH EXACT
SOLUTIONS THE MODEL WITH BOTH
CASES OF ABSENCE AND EXISTENCE
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FIELDV(x) = mygx Px = —lha_ (2.3)

Quantum-mechanical solution for the one-

dimentional harmonic oscillator with wavefunctions, Taking into account (2.2) and (2.3) in (2.1) we

which have to vanish at infinity can be obtained by have
solving  exactly  one-dimensional  stationary 5 2
Schradinger equation in the position representation b, 2me 2m0 (E _ MW X )¢ =0. (4
dx? 2
ﬁZ
[ﬁ'i' V(x)]v,b(x) = Ey(x), (2.1) Solving this equation exactly, we obtain the

following expression for the energy spectrum:

with non-relativistic harmonic oscillator potential
— _ 1 _

ety E=E, = ho (n + 2), n=012.. (25).

V(x) = >

(2.2
It is possible also to show that wavefunctions of
Here, m, and w are constant effective mass and the stationary states the model under consideration in
angular frequency of the non-relativistic quantum the position representation obtained from (2.4) are
harmonic oscillator, and one-dimentional momentum

operator p,, is defined in canonical approach as |

x) (2.6)
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where H,, (x) are Hermite polynomials defined in terms of hypergeometric function as follows

n _ro_n1gq
H,(x) = (2x)",F, ( 2 Tz x—z) (2.7)

Let’s now consider the model of a linear harmonic oscillator (2.2) in external homogeneous gravitational
field. Then, the potential of the harmonic oscillator is

2,2
V(x) = % + mygx. (2.8)

Now we need to solve the following Schrodinger equation:

[+ Mo 4 mggx |9(x) = Epo). 29)

Zmo 2

Note that all calculations are still in a canonical approach. Therefore, one-dimensional momentum
operator can be written as (2.3). We have

ay 2moE  mgylw? g2
T [ o (x+x)? + ;] Y =0, (2.10)
where,
=< 2.11
Xo = (2.11)
We can rewrite (2.10) as
d?y 2moE  my?w?
| e (A xo)z]lp =0, (2.12)
292
E=E+ (2.13)
2mow?’

Analytical solution of the equation (2.12) leads to explicit expression of the discrete equidistant energy
spectrum:

. AW i
E_En—ha)(n+2) P— -n=012,. (2.14)

The corresponding wavefunctions are
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One easily observes that

P (X) = P (x = x0).

Under the case g = 0 both energy spectrum E7 (2.14) and wavefunctions 1. (x) (2.15) correctly recover
energy spectrum E,, (2.5) and wavefunctions ,,(x) (2.6).

3. CONFINED POSITION-DEPENDENT MASS HARMONIC OSCILLATOR MODEL UNDER
THE HOMOGENEOUS GRAVITATIONAL FIELD

Recently, we considered the quantum harmonic oscillator problem confined in the finite region, which
effective mass varied with position my, — M(x) and its Kinetic energy operator was compatible with Galilean
invariance [8]:

AGI—_ﬁ_Z[_l 4, d 1 d  d 1 ]
H' = 6 LM(x)dx?2 = dxM(x)dx = dx2M(x)] "’ (3.1)
We introduced confined harmonic oscillator potential as
M(x)w?x?
V(x) = { 2 ’ |x| <a, (32)
s x| = a,

and then solved exactly the Schrodinger equation corrsponding to the following Galilean invariant Hamiltonian:

- R2[az M a 1M 2/M\*]  Mx)wx?
] ] e

e
2M | dx? Mdx 3 M

Here, we also defined position-dependent effective mass M (x) via the following analytical expression:

a’m
M=M(x)= az_x‘;. (3.4)
We obtained that energy spectrum E€! is non-equidistant and has the following expression:
ES! = he (n+1)+ o+ 1)+ (3.5)
n 2 2mya? 3mga?’ ’

whereas the wavefunctions of the stationary states S are expressed through the Gegenbauer polynomials by
the following manner:

mowa? (mowale

o =gt (1-2) (T () .

a

Here, Gegenbauer polynomials C2(x) are defined in terms of the ,F, hypergeometric functions as
follows:

Cr(l/l)(x) _ 20 2F1 (—n,n+2/'l_ 1—x)’ /T = 0.

= .1 )
| -
n! A+2 2

Normalization factor c&! is obtained from the orthogonality relation for the Gegenbauer polynomials and
its exact expression is the following:

2
2 mowa“ 1
Gl _ ZmOwa r mewa? 1 (n+—h +2>n!
h 2 nal“(n+m+1)
n
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Now we can explore confined position-dependent mass harmonic oscillator model under the homogeneous
gravitational field. First of all, we introduce external field to confined harmonic oscillator potential (3.2) as
follows:

M+ M(x)gx, x| <a,

0, x| > a.

(3.7)

V(x) = {

Taking into account analytical definition of the position-dependent effective mass M(x) (3.4) we need to
solve the following Schrédinger equation:

Mw?x?

]1,0+—[E— = —Mgx|p=0 @8

d? 2x_ d 24x2 1 2 1

dx?  a’-x%dx ' 3 (a?2-x2)2 3a2-x2 3 (az—xz)2

Introduction of the new dimensionless variable ¢ as:

f—x d _1d 4 _ 1 d*
T d dx_adf dxz_a2d$2

and
2 2 3
Co = Zm;;za —E, 1= 2m(;12ga . =+ Agtat,
leads to:
"no_ 28y o _(Cz_co)fz_z 1 c1é _

v 1—521/) + (1—52 (1-§2)2 31-¢2 (1—52)2) v=0

Taking into account
2 2
Co (c;—c)é? 2 1 cé _%‘g‘%f‘(%‘g)fz
1-¢ (1-8)2 31-¢ (1-§)7 (1~ ’

We get

2 2
14} 25 ! Co—3=¢ E_ 273 52
e 11-5(22 o (39)

To solve this equation exactly we can apply Nikiforov-Uvarov method [9], which can be applied to the
following second order differential equations:

Y’ +§¢’ +%¢ =0. (3.10)

Here, it is assumed that ¢ and & are arbitrary polynomlals of at most second degree and fis an arbltrary
polynomial of at most first degree. The following comparison allows to say that Nikiforov-Uvarov method is
applicable to exact solution of eq.(3.9):

- ~ 2 2
f=-2§ o=1-%8, G=C0—§—le—(C2—§)fz (3.11)
We look for expression of i as:
LIORT:
Y =@y, where elow! (3.12)

Via simple computations one finds that
Vs
Y=oy + oy,

mo—mo+m?

1/)”=—<py+ <py + @y

o2

Taking these computations into account in (3.9) leads to the equation for y(%):

;g . 2m+T ,  o+m?+n(i-o')+n'c 0
E— = 3.13
+ a4 + o2 y ) (3.13)
where
T=2m+ 1, g=6+n’+n(f—-0')+n'o. (3.14)
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We can rewrite (3.13), as

Y'Yy + 2y =0 (3.15)
Assuming that
o = Ao, A = const, n=A—1, (3.16)
we have
A =6+n?+n(F-0)+1o,
which requires to solve the following quadratic equation:
m+(&-0)n+6—po =0.
Taking into account:
o' =-2¢, T—0 =0,
we find that
7T:51\/.UU—5:51\/H+§—Co+c1f+(cz—(M+§)>52; &g ==*1 (3.17)
After some computations:
Co+Co+e, /(cz—co)z—cl2 2
U= . —3 &= +1, (3.18)
2 C2—Co—¢&2 ’(02_00)2_012
C, — -] = =K. 3.19
2 (u + 3) > (3.19)
Substituting (3.18) & (3.19) at (3.17), we obtain the following expressions for 7, T and A:
1 )
mT=E& K —, 3.20
) (Vieg + = (320)
C C
T=2¢g (\/Ef + j%) —28=2(gVKk—1)E+ & \/—% (3.21)
Cy+Cotey ,(cz—co)z—c2
A=u+ ' = - 1—§+ VK. (3.22)
Taking into account (3.20) at (3.12) we have to compute the following integral
(§) £ £ 1
0(®) = el ® = Vg e St
that gives for us | - _ _ b
T V& e (3.24)
p® =>0A-9 ™A+,
1 c2—Co+_[(c2—¢)2—c?
C =
Finiteness of the (%) at singular points £ = +1, Vi = =K1 — K3, (3.26)
i. e. the condition lim ¢(&) = const leads to
E_)il 1 Cq
Kip =—3 (\/E + ﬁ) (3.27)
&g =& =—1, k>0, K;,<0.
Therefore, we have Then, expression of the wavefunction i also
will have the following exact expression:
C2tCo— ,(02—60)2—612 2
n= > -3 B2 Y=p@®y=>0-971(1 +¥7 "2y. (3.28)

37



A.M. MAMMADOVA

We also obtain the following expressions for 7 (€), T Then, eg. (3.15) will have the form as follows:
and A in terms of x, and :

oy +ty'+ 1y =0. (3.32)

C1
2(k1+K3)’

= (k, +r,)¢+ (3.29)
Function y(&) should be finite at values & = +1.

Therefore, we have to find its polynomial solutions.

T= 2(K1 + Ky — 1)& + = ) (3.30)  For this reason, we compare the following exact
K1+K2 .
expression of eq. (3.32)
C2+Co— ,(CZ_CO)Z_Clz 2
A= > —§+ K; + K. (3.31)

c
(1—<fz)y”+[2(rc1+1c2—1)f+—1 y +Ay=0
Ky + K,

1

with the following second order differential equation for the Jacobi polynomials
A=-x2)y"+[f—-a—-(a+B+2)x]y +n(n+a+p+1)y=0,

where, y = Pn(“'ﬁ)(x) are Jacobi polynomials defined in terms of the ,F; hypergeometric functions as follows:

PP () = @n2h (""’"+“+B+1; ﬂ) ap*-1/2,

n! a+1 2

a+ B =-2(k + ky),

C1

a+p =

KytKy

Some computations lead us to the following non-equidistant energy spectrum:

(3.33)
Wavefunctions of the stationary states have form:
_ , 9GI _ gL x\ "1 x\7*2 (-2K4,-2K,) (X
Y=Y, (x)—cn 1—5 1+Z P, o (3.34)
The normalization factor cf ol
gGI 1 (2n+2vr+1)I(n+2vVe+1)n!
Chn = (3.35)
Vs al(n-2Kk,+1)I'(n—-2K,+1)

is defined from the orthogonality relation for Jacobi polynomials Pn(“’ﬁ)(x) of the following form

20+B+1  T(nia+1D)I(n+p+1)
2n+a+f+1  T(n+a+Bf+1)n! M

f_ll(l —x)% (1 +x)#8 Pn(la’ﬁ)(x) Pn(a’ﬁ)(x)dx =

within conditions @ > —1 and g > —1. Therefore, |

wavefunctions of the stationary states in the position a
representation are also orthogonal in the finite region gGI * 196Gl —
P . g g f[wm (x)] lpn (x)dx _677171'
—a<x<a.
—-a
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Thanks to analytical expressions of energy
spectrum (3.33) and wavefunctions (3.34) obtained
via exact solution of the Schrodinger equation (3.9),
we achieved our main goal. Now, we will discuss
briefly some limit relations and special cases of these
results in final section of the paper.

4. DISCUSSIONS AND LIMIT RELATIONS
Let’s discuss obtained expressions for the energy
spectrum (3.33) and wavefunctions of the stationary
states (3.34) of a confined position-dependent mass
harmonic oscillator.

It is clear that both energy spectrum (3.33) and
wavefunctions of the stationary states (3.34) easily
recover energy spectrum (3.5) and wavefunctions of
the stationary states (3.6) in case of g = 0. They also

recover energy spectrum (2.14) and wavefunctions of
the stationary states (2.15) of the nonrelativistic
guantum harmonic oscillator, if a — co. It proves the
correctness of our computations. Here, one needs to
take into account two important results of the
mathematics — first one is a Taylor expansion of the
square root and second one special case relation
between the Jacobi and Gegenbauer polynomials.

Our conclusion is that the model considered here
is interesting and its behavior cordially differs from
behavior of the ordinary harmonic oscillator under the
external gravitational field. Confinement effects and
unique non-linear picture of the energy spectrum
appeared here can extend its potential applications in
future.
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