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1. INTRODUCTION 

 
Quantum systems with position-dependent 

effective mass have been the subject of many 

attracting studies in recent years [1-4]. The 

Schrödinger equation corresponding to such systems 

with non-constant mass provides interesting and 

useful solutions for the description of them. At the 

same time, behavior of the quantum system influenced 

from attached external field is also within the 
attraction of the scientists working on this and related 

research topics [5,6]. Main reason is that external field 

attached to the quantum system under consideration 

can thoroughly change its main properties. Then, such 

an effect also can open for studying many of 

previously hidden aspects regarding them. 

In present paper, we study an oscillator model 

that is under the influence of the external 

homogeneous gravitational field. Already, same 

model exhibiting confinement effect was studied in 

detail and results have been published in [7]. Then, 

taking into account importance of the appearance of 

the external field, we decided to obtain more general 

solutions by extending free motion in the confined 

oscillator potential to the similar motion, but through 

taking into account external homogeneous 

gravitational field. We are able to obtain analytical 
expressions of the wavefunctions corresponding to our 

model under study as well as its energy spectrum. In 

our studies, we preserved general definition of the 

kinetic operator, which is still compatible with the 

Galilean invariance. Correctness of the obtained 

analytical expressions is proven via their correct 

reduce to the known non-relativistic results under the 

certain limit relations. 

We structured our paper as follows: in Section 2, 

basic known information is provided for the non-

relativistic quantum harmonic oscillator. Briefly, 

analytical solutions of the Schrödinger equation for it 

are presented within the canonical approach. 

Analytical solutions cover both wave functions of the 

stationary states of the quantum oscillator itself as 

well as same model but under the external 

homogeneous gravitational field. It is shown that both 

wave functions are expressed via the Hermite 

polynomials, but wave function for the model 

suppressed to the external homogeneous gravitational 

field differs from free harmonic oscillator with the 

shifted position 𝑥. Analytical expressions of the 

energy spectrum of both models also have similar 

behavior – both of them are equidistant. However, 

energy spectrum of the model under the external 

homogeneous gravitational field differs with some 

shifted constant parameter that appears as a result of 

the applied external field. It is shown that analytical 

expression of the wave functions and energy spectrum 

of the model with an applied external homogeneous 

gravitational field easily recovers the model of the 

non-relativistic oscillator within the canonical 

approach for case of the disappearance of the external 

field. Section 3 is devoted to the confined position-

dependent mass harmonic oscillator model under the 

homogeneous gravitational field. In order achieve the 
confinement effect, we replaced constant effective 

mass of the model under study with the effective mass 

that varies with position 𝑥. Then, aiming to preserve 

Hermiticity property of the Hamiltonian of the model, 

we also replaced its kinetic energy operator with the 

kinetic energy operator compatible with Galilean 

invariance. Both analytical expressions of the wave 

functions and energy spectrum of the confined 

position-dependent mass harmonic oscillator model 

with the kinetic energy operator compatible with 
Galilean invariance and same model but under the 

homogeneous gravitational field are presented here. 

Final section contains some brief discussions and 

possible limit relations between the models presented 

here. 

 

2. NON-RELATIVISTIC QUANTUM 

HARMONIC OSCILLATOR WITHIN THE 

CANONICAL APPROACH – EXACT 

SOLUTIONS THE MODEL WITH BOTH 

CASES OF ABSENCE AND EXISTENCE 
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OF THE EXTERNAL GRAVITATIONAL 

FIELD 𝑽(𝒙) = 𝒎𝟎𝒈𝒙 

        

Quantum-mechanical solution for the one-

dimentional harmonic oscillator with wavefunctions, 

which have to vanish at infinity can be obtained by 

solving exactly one-dimensional stationary 

Schrödinger equation in the position representation 
 

 [
𝑝̂𝑥

2

2𝑚
+ 𝑉(𝑥)] 𝜓(𝑥) = 𝐸𝜓(𝑥),         (2.1) 

 

with non-relativistic harmonic oscillator potential  
  

𝑉(𝑥) =
𝑚0𝜔2𝑥2

2
.           (2.2) 

 

Here, 𝑚0 and 𝜔 are constant effective mass and 

angular frequency of the non-relativistic quantum 
harmonic oscillator, and one-dimentional momentum 

operator 𝑝̂𝑥 is defined in canonical approach as 

 

𝑝̂𝑥 = −𝑖ℏ
𝑑

𝑑𝑥
.   (2.3) 

 

Taking into account (2.2) and (2.3) in (2.1) we 

have 

 

𝑑2𝜓

𝑑𝑥2
+

2𝑚0

ℏ2
(𝐸 −

𝑚0𝜔2𝑥2

2
) 𝜓 = 0.    (2.4) 

 

Solving this equation exactly, we obtain the 

following expression for the energy spectrum: 
 

  𝐸 ≡ 𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
),    𝑛 = 0,1,2, …  (2.5).                        

 

It is possible also to show that wavefunctions of 

the stationary states the model under consideration in 

the position representation obtained from (2.4) are 

 

𝜓 ≡ 𝜓𝑛(𝑥) =
1

√2𝑛𝑛!
(

𝑚0𝜔

𝜋ℏ
)

1

4
𝑒−

𝑚𝜔𝑥2

2ℏ 𝐻𝑛 (√
𝑚0𝜔

ℏ
𝑥),            (2.6) 

 

where 𝐻𝑛 (𝑥) are Hermite polynomials defined in terms of hypergeometric function as follows 
 

            𝐻𝑛(𝑥) = (2𝑥)𝑛
2𝐹0 (−

𝑛

2
,    −

𝑛−1

2
−

;   
1

𝑥2
). (2.7) 

  

Let’s now consider the model of a linear harmonic oscillator (2.2) in external homogeneous gravitational 

field. Then, the potential of the harmonic oscillator is  
 

𝑉(𝑥) =  
𝑚0𝜔2𝑥2

2
+ 𝑚0𝑔𝑥.    (2.8) 

 

Now we need to solve the following Schrödinger equation: 
 

[
𝑝̂𝑥

2

2𝑚0
+

𝑚0𝜔2𝑥2

2
+ 𝑚0𝑔𝑥  ] 𝜓(𝑥) = 𝐸𝜓(𝑥).                    (2.9) 

 

Note that all calculations  are still in a canonical approach. Therefore, one-dimensional momentum 

operator can be written as (2.3). We have   

      

𝑑2𝜓

𝑑𝑥2
+ [

2𝑚0𝐸

ℏ2
−

𝑚0
2𝜔2

ℏ2
(𝑥 + 𝑥0)2 +

𝑔2

𝜔4
] 𝜓 = 0,       (2.10) 

 

where, 

𝑥0 =
𝑔

𝜔2
.     (2.11) 

We can rewrite (2.10) as 
 

𝑑2𝜓

𝑑𝑥2
+ [

2𝑚0𝐸

ℏ2
−

𝑚0
2𝜔2

ℏ2
(𝑥 + 𝑥0)2] 𝜓 = 0,   (2.12) 

 

𝐸̃ = 𝐸 +
ℏ2𝑔2

2𝑚0𝜔4
.     (2.13) 

 

Analytical solution of the equation (2.12) leads to explicit expression of the discrete equidistant energy 

spectrum: 

𝐸 ≡ 𝐸𝑛
𝑔

= ℏ𝜔 (𝑛 +
1

2
) −

ℏ2𝑔2

2𝑚0𝜔4
, 𝑛 = 0,1,2, ….  (2.14) 

 

The corresponding wavefunctions are 
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𝜓 ≡ 𝜓𝑛
𝑔(𝑥) =

1

√2𝑛𝑛!
(

𝑚0𝜔

𝜋ℏ
)

1

4
𝑒−

𝑚0𝜔(𝑥+
𝑔

𝜔2)
2

2ℏ 𝐻𝑛 (√
𝑚0𝜔

ℏ
(𝑥 +

𝑔

𝜔2
)).  (2.15) 

 

One easily observes that 
  

𝜓𝑛
𝑔(𝑥) = 𝜓𝑛(𝑥 − 𝑥0). 

 

Under the case 𝑔 = 0 both energy spectrum 𝐸𝑛
𝑔

 (2.14) and wavefunctions 𝜓𝑛
𝑔(𝑥) (2.15) correctly recover 

energy spectrum 𝐸𝑛  (2.5) and wavefunctions 𝜓𝑛(𝑥) (2.6). 

 

3. CONFINED POSITION-DEPENDENT MASS HARMONIC OSCILLATOR MODEL UNDER    

THE HOMOGENEOUS GRAVITATIONAL FIELD 

 
Recently, we considered the quantum harmonic oscillator problem confined in the finite region, which 

effective mass varied with position 𝑚0 → 𝑀(𝑥) and its kinetic energy operator was compatible with Galilean 

invariance [8]: 
 

𝐻0
𝐺𝐼 = −

ℏ2

6
[

1

𝑀(𝑥)

𝑑2

𝑑𝑥2
+

𝑑

𝑑𝑥

1

𝑀(𝑥)

𝑑

𝑑𝑥
+

𝑑2

𝑑𝑥2

1

𝑀(𝑥)
] .        (3.1) 

 

We introduced confined harmonic oscillator potential as  
 

      𝑉(𝑥) = {
𝑀(𝑥)𝜔2𝑥2

2
,                |𝑥| < 𝑎,

∞,                             |𝑥| ≥ 𝑎,
     (3.2) 

 

and then solved exactly the Schrödinger equation corrsponding to the following Galilean invariant Hamiltonian: 
 

       𝐻𝐺𝐼 = −
ℏ2

2𝑀
[

𝑑2

𝑑𝑥2
−

𝑀′

𝑀

𝑑

𝑑𝑥
−

1

3

𝑀′′

𝑀
+

2

3
(

𝑀′

𝑀
)

2

] +
𝑀(𝑥)𝜔2𝑥2

2
 .   (3.3) 

 

Here, we also defined position-dependent effective mass 𝑀(𝑥) via the following analytical expression: 
 

𝑀 ≡ 𝑀(𝑥) =
𝑎2𝑚0

𝑎2−𝑥2
.                  (3.4) 

 

We obtained that energy spectrum 𝐸𝑛
𝐺𝐼  is non-equidistant and has the following expression: 

 

𝐸𝑛
𝐺𝐼 = ℏ𝜔 (𝑛 +

1

2
) +

ℏ2

2𝑚0𝑎2
𝑛(𝑛 + 1) +

ℏ2

3𝑚0𝑎2
,                      (3.5) 

 

whereas the wavefunctions of the stationary states ψGI  are expressed through the Gegenbauer polynomials by 

the following manner: 
  

𝜓̃𝐺𝐼(𝑥) = 𝑐𝑛
𝐺𝐼 (1 −

𝑥2

𝑎2
)

𝑚0𝜔𝑎2

2ℏ
𝐶𝑛

(
𝑚0𝜔𝑎2

ℏ
+

1

2
)

(
𝑥

𝑎
).                        (3.6) 

 

Here, Gegenbauer polynomials 𝐶𝑛
𝜆̅(𝑥) are defined in terms of the 2𝐹1  hypergeometric functions as 

follows: 
 

𝐶𝑛

(𝜆̅)
(𝑥) =

(2𝜆̅)𝑛

𝑛! 2𝐹1 (
−𝑛,𝑛+2𝜆̅

𝜆̅+
1

2

;  
1−𝑥

2
), 𝜆̅ ≠ 0. 

 

𝑁ormalization factor 𝑐𝑛
𝐺𝐼  is obtained from the orthogonality relation for the Gegenbauer polynomials and 

its exact expression is the following: 
 

𝑐𝑛
𝐺𝐼 = 2

𝑚0𝜔𝑎2

ℏ Г (
𝑚0𝜔𝑎2

ℏ
+

1

2
) √

(𝑛+
𝑚0𝜔𝑎2

ℏ
+

1

2
)𝑛!

𝜋𝑎Г(𝑛+
2𝑚0𝜔𝑎2

ℏ
+1)

. 
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Now we can explore confined position-dependent mass harmonic oscillator model under the homogeneous 

gravitational field. First of all, we introduce external field to confined harmonic oscillator potential (3.2) as 

follows: 
 

𝑉(𝑥) = { 
𝑀(𝑥)𝜔2𝑥2

2
+ 𝑀(𝑥)𝑔𝑥,   |𝑥| ≤ 𝑎,

∞,                                    |𝑥| > 𝑎.
                                      (3.7) 

 

Taking into account analytical definition of the position-dependent effective mass 𝑀(𝑥) (3.4) we need to 

solve the following Schrödinger equation: 
 

[
𝑑2

𝑑𝑥2
−

2𝑥

𝑎2−𝑥2

𝑑

𝑑𝑥
+

2

3

4𝑥2

(𝑎2−𝑥2)2
−

1

3

2

𝑎2−𝑥2
−

1

3

8𝑥2

(𝑎2−𝑥2)2
] 𝜓 +

2𝑀

ℏ2
[𝐸 −

𝑀𝜔2𝑥2

2
− 𝑀𝑔𝑥] 𝜓 = 0      (3.8)                   

 

Introduction of the new dimensionless variable 𝜉 as:  
 

𝜉 =
𝑥

𝑎
,   

𝑑

𝑑𝑥
=

1

𝑎

𝑑

𝑑𝜉
,  

𝑑2

𝑑𝑥2
=

1

𝑎2

𝑑2

𝑑𝜉2
 

and 
 

 𝑐0 =
2𝑚0𝑎2𝐸

ℏ2
,   𝑐1 =

2𝑚0
2𝑔𝑎3

ℏ2
,     𝑐2 = 𝑐0 +  𝜆0

4𝑎4, 

 

leads to: 

𝜓′′ −
2𝜉

1−𝜉2
𝜓′ + (

𝑐0

1−𝜉2
−

(𝑐2−𝑐0)𝜉2

(1−𝜉2)2
−

2

3

1

1−𝜉2
−

𝑐1𝜉

(1−𝜉2)2
) 𝜓 = 0. 

 

Taking into account 

𝑐0

1 − 𝜉2
−

(𝑐2 − 𝑐0)𝜉2

(1 − 𝜉2)2
−

2

3

1

1 − 𝜉2
−

𝑐1𝜉

(1 − 𝜉2)2
=

𝑐0 −
2
3 − 𝑐1𝜉 − (𝑐2 −

2
3) 𝜉2

(1 − 𝜉2)2
, 

 

We get 

𝜓′′ −
2𝜉

1−𝜉2
𝜓′ +

𝑐0−
2

3
−𝑐1𝜉−(𝑐2−

2

3
)𝜉2

1−𝜉2
𝜓 = 0.   (3.9) 

 

To solve this equation exactly we can apply Nikiforov-Uvarov method [9], which can be applied to the 

following second order differential equations: 
 

 𝜓′′ +
𝜏̃

𝜎
𝜓′ +

𝜎̃

𝜎2
𝜓 = 0.         (3.10) 

 

Here, it is assumed that σ and 𝜎̃ are arbitrary polynomials of at most second degree and 𝜏̃ is an arbitrary 
polynomial of at most first degree. The following comparison allows to say that Nikiforov-Uvarov method is 

applicable to exact solution of eq.(3.9): 
 

𝜏̃ = −2ξ,   σ = 1 − ξ2,     σ̃  = 𝑐0 −
2

3
− 𝑐1𝜉 − (𝑐2 −

2

3
) 𝜉2            (3.11) 

 

We look for expression of 𝜓 as: 

                      𝜓 = φ(ξ)y,       where    φ = e
∫

π(ξ)

σ(ξ)
dξ

 .                                         (3.12)    
  

Via simple computations one finds that 

𝜓′ =
𝜋

𝜎
𝜑𝑦 + 𝜑𝑦′, 

 

𝜓′′ =
𝜋′𝜎−𝜋𝜎+𝜋2

𝜎2
𝜑𝑦 +

2𝜋

𝜎
𝜑𝑦′ + 𝜑𝑦′′. 

 

Taking these computations into account in (3.9) leads to the equation for 𝑦(ξ): 
 

𝑦′′ +
2𝜋+𝜏̃

𝜎
𝑦′ +

𝜎̃+𝜋2+𝜋(𝜏̃−𝜎′)+𝜋′𝜎

𝜎2
𝑦 = 0,    (3.13) 

where 

                     𝜏 = 2𝜋 + 𝜏̃,  𝜎̅ = 𝜎̃ + 𝜋2 + 𝜋(𝜏̃ − 𝜎′) + 𝜋′𝜎.        (3.14) 
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We can rewrite (3.13), as 

  𝑦′′ +
𝜏

𝜎
𝑦′ +

𝜎̅

𝜎2
𝑦 = 0     (3.15)  

Assuming that 

 σ̅ = λσ, λ = const, μ = λ − π′,               (3.16) 

we have 

λσ = σ̃ + π2 + π(τ̃ − σ′) + π′σ, 
 

which requires to solve the following quadratic equation: 
 

π2 + (τ̃ − σ′)π + σ̃ − μσ = 0. 
 

Taking into account: 

𝜎′ = −2ξ ,                 𝜏̃ − 𝜎′ = 0, 
 

we find that 
 

𝜋 = 𝜀1√𝜇𝜎 − 𝜎̃ = 𝜀1√𝜇 +
2

3
− 𝑐0 + 𝑐1𝜉 + (𝑐2 − (𝜇 +

2

3
)) 𝜉2 , 𝜀1 = ±1. (3.17)  

 

After some computations: 
 

𝜇 =
𝑐2+𝑐0+𝜀2√(𝑐2−𝑐0)2−𝑐1

2

2
−

2

3
, 𝜀2 = ±1,   (3.18) 

 

𝑐2 − (𝜇 +
2

3
) =

𝑐2−𝑐0−𝜀2√(𝑐2−𝑐0)2−𝑐1
2

2
= 𝜅.  (3.19)    

 

Substituting (3.18) & (3.19) at (3.17), we obtain the following expressions for 𝜋, 𝜏 and 𝜆:  
 

     𝜋 = 𝜀1 (√𝜅𝜉 +
𝑐1

2√𝜅
),      (3.20) 

 

𝜏 = 2𝜀1 (√𝜅𝜉 +
𝑐1

2√𝜅
) − 2𝜉 = 2(𝜀1√𝜅 − 1)𝜉 + 𝜀1

𝑐1

√𝜅
.  (3.21) 

 

𝜆 = 𝜇 + 𝜋′ =
𝑐2+𝑐0+𝜀2√(𝑐2−𝑐0)2−𝑐1

2

2
−

2

3
+  𝜀1√𝜅.              (3.22)  

 

Taking into account (3.20) at (3.12) we have to compute the following integral 

 

𝜑(ξ) = 𝒆
∫

𝝅(𝞷)

𝝈(𝞷)
𝒅𝞷

= 𝒆
𝜀1√𝜅 ∫

𝞷   

1−𝜉2𝒅𝞷
𝒆

𝜀1
𝑐1

2√𝜅
∫

𝟏   

1−𝜉2𝒅𝞷
, 

 
that gives for us 

 

𝜑(ξ) = (1 − ξ)−𝜅𝟏 (1 + ξ)−𝜅𝟐 , 
 

𝜅1,2 =
1

2
𝜀1 (√𝜅 ±

𝑐1

2√𝜅
). 

 

Finiteness of the  𝜑(ξ) at singular points ξ = ±1, 

i. e. the condition   lim
ξ→±1

𝜑(ξ) = 𝑐𝑜𝑛𝑠𝑡 leads to  

 

𝜀1 = 𝜀2 = −1, 𝜅 > 0,    𝜅1,2 ≤ 0.   

Therefore, we have 
  

𝜇 =
𝑐2+𝑐0−√(𝑐2−𝑐0)2−𝑐1

2

2
−

2

3
 ,     (3.23) 

𝜋 = −√𝜅𝜉 −
𝑐1

2√𝜅
,         (3.24) 

 

𝜅 =
𝑐2−𝑐0+√(𝑐2−𝑐0)2−𝑐1

2

2
, (3.25) 

 

                     √𝜅 = −𝜅1 − 𝜅2,      (3.26) 
 

𝜅1,2 = −
1

2
(√𝜅 ±

𝑐1

2√𝜅
).  (3.27) 

 

Then, expression of the wavefunction 𝜓 also 

will have the following exact expression: 

 

𝜓 = 𝜑(ξ)𝑦 = (1 − ξ)−𝜅𝟏(1 + ξ)−𝜅𝟐𝑦. (3.28) 
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We also obtain the following expressions for π (ξ), 𝜏 

and 𝜆 in terms of 𝜅1 and 𝜅2: 

 

𝜋 = (𝜅1 + 𝜅2)𝜉 +
𝑐1

2(𝜅1+𝜅2)
 ,                 (3.29) 

 

𝜏 = 2(𝜅1 + 𝜅2 − 1)𝜉 +
𝑐1

𝜅1+𝜅2
 ,             (3.30) 

 

𝜆 =
𝑐2+𝑐0−√(𝑐2−𝑐0)2−𝑐1

2

2
−

2

3
+  𝜅1 + 𝜅2 .  (3.31) 

 

Then, eq. (3.15) will have the form as follows: 

 

  𝜎𝑦′′ + 𝜏𝑦′ + 𝜆𝑦 = 0.              (3.32) 

 

Function 𝑦(𝜉) should be finite at values 𝜉 = ±1. 
Therefore, we have to find its polynomial solutions. 

For this reason, we compare the following exact 

expression of eq. (3.32)  

 

(1 − 𝜉2)𝑦′′ + [2(𝜅1 + 𝜅2 − 1)𝜉 +
𝑐1

𝜅1 + 𝜅2
] 𝑦′ + 𝜆𝑦 = 0 

 

with the following second order differential equation for the Jacobi polynomials 

 

(1 − 𝑥2)𝑦̅′′ + [𝛽 − 𝛼 − (𝛼 + 𝛽 + 2)𝑥]𝑦̅′ + 𝑛(𝑛 + 𝛼 + 𝛽 + 1)𝑦̅ = 0, 
 

where, 𝑦̅ = 𝑃𝑛
(𝛼,𝛽)

(𝑥) are Jacobi polynomials defined in terms of the 𝐹2 1 hypergeometric functions as follows: 

 

𝑃𝑛
(𝛼,𝛽)

(𝑥) =
(𝛼+1)𝑛 𝐹2 1

𝑛!
(−𝑛,𝑛+𝛼+𝛽+1

𝛼+1
;  

1−𝑥

2
) ,    𝛼; 𝛽 ≠ −1/2, 

 

𝛼 + 𝛽 = −2(𝜅1 + 𝜅2), 
 

𝛼 + 𝛽 =
𝑐1

𝜅1+𝜅2
. 

 

Some computations lead us to the following non-equidistant energy spectrum: 

 

𝐸 ≡ 𝐸𝑛
𝑔𝐺𝐼

= ℏ𝜔√
1

2
+ √

1

4
−

𝑔2

𝑎2𝜔4
(𝑛 +

1

2
) +

ℏ2

2𝑚0𝑎2
𝑛(𝑛 + 1) +

ℏ2

3𝑚0𝑎2
− 

 

− 𝑚0𝜔2𝑎2 (
1

2
− √

1

4
−

𝑔2

𝑎2𝜔4
).                                       (3.33)                                                                                              

 

Wavefunctions of the stationary states have form: 

 

                 𝜓 ≡ 𝜓𝑛
𝑔𝐺𝐼(𝑥) = 𝑐𝑛

𝑔𝐿
(1 −

𝑥

𝑎
)

−𝜅1

(1 +
𝑥

𝑎
)

−𝜅2

𝑃𝑛
(−2𝜅1 ,−2𝜅2)

(
𝑥

𝑎
) .         (3.34) 

 

The normalization factor 𝑐𝑛
𝑔𝐺𝐼

 
 

𝑐𝑛
𝑔𝐺𝐼

=
1

2√𝜅+
1
2

√
(2𝑛+2√𝜅+1)Г(𝑛+2√𝜅+1)𝑛!

𝑎Г(𝑛−2𝜅1+1)Г(𝑛−2𝜅2+1)
                                    (3.35) 

 

is defined from the orthogonality relation for Jacobi polynomials 𝑃𝑛
(𝛼,𝛽)(𝑥) of the following form 

 

∫ (1 − 𝑥)𝛼1

−1
(1 + 𝑥)𝛽 𝑃𝑚

(𝛼,𝛽)
(𝑥) 𝑃𝑛

(𝛼,𝛽)
(𝑥)𝑑𝑥 =

2𝛼+𝛽+1

2𝑛+𝛼+𝛽+1

Г(𝑛+𝛼+1)Г(𝑛+𝛽+1)

Г(𝑛+𝛼+𝛽+1)𝑛!
𝛿𝑚𝑛, 

 

within conditions 𝛼 > −1 and 𝛽 > −1. Therefore, 

wavefunctions of the stationary states in the position 

representation are also orthogonal in the finite region 

−𝛼 < 𝑥 < 𝑎: 

 

∫[𝜓𝑚
𝑔𝐺𝐼(𝑥)]

∗
𝜓𝑛

𝑔𝐺𝐼(𝑥)𝑑𝑥 =

𝑎

−𝑎

𝛿𝑚𝑛. 
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Thanks to analytical expressions of energy 

spectrum (3.33) and wavefunctions (3.34) obtained 

via exact solution of the Schrödinger equation (3.9), 

we achieved our main goal. Now, we will discuss 

briefly some limit relations and special cases of these 

results in final section of the paper. 

 

4. DISCUSSIONS AND LIMIT RELATIONS 

 
Let’s discuss obtained expressions for the energy 

spectrum (3.33) and wavefunctions of the stationary 

states (3.34) of a confined position-dependent mass 

harmonic oscillator. 

It is clear that both energy spectrum (3.33) and 

wavefunctions of the stationary states (3.34) easily 

recover energy spectrum (3.5) and wavefunctions of 

the stationary states (3.6) in case of 𝑔 = 0. They also 

recover energy spectrum (2.14) and wavefunctions of 

the stationary states (2.15) of the nonrelativistic 

quantum harmonic oscillator, if 𝑎 → ∞. It proves the 

correctness of our computations. Here, one needs to 

take into account two important results of the 

mathematics – first one is a Taylor expansion of the 

square root and second one special case relation 

between the Jacobi and Gegenbauer polynomials. 

Our conclusion is that the model considered here 

is interesting and its behavior cordially differs from 
behavior of the ordinary harmonic oscillator under the 

external gravitational field. Confinement effects and 

unique non-linear picture of the energy spectrum 

appeared here can extend its potential applications in 

future. 
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