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Papers [3, 4] are devoted to the study of the quantum version of the nonlinear classical harmonic oscillator proposed in 

[1]. The authors of [3, 4] applied various quantization schemes for the classical Hamiltonian and expressed the wave functions 

of a quantum nonlinear harmonic oscillator in terms of Λ-dependent Hermite polynomials ℋ𝑛(𝑦, Λ) and 𝜆̃- modified Hermite 

polynomials ℋ𝑛(𝜁, 𝜆̃), respectively. We showed that these polynomials are not new, but in fact, for Λ<0  and 𝜆̃ < 0 , are 

Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥), and for Λ > 0 and  𝜆̃ > 0 , they are special cases of pseudo-Jacobi polynomials 𝑃𝑛(𝑥; 𝜈, 𝑁) 

corresponding to the value of the parameter 𝜈 = 0. In addition, we have constructed a generating function for the polynomials 

𝑃𝑛(𝑥; 0, 𝑁) and established their connection with the polynomials 𝐶𝑛
𝜈(𝑥), and also constructed two exactly solvable potentials 

associated with the pseudo-Jacobi polynomials. 

  

Keywords: nonlinear harmonic oscillator, wave functions, Gegenbauer and pseudo-Jacobi polynomials, generating function, 

limit relations. 

PACS Nos: 03.65.-w Quantum mechanics, 02.30. Hq Ordinary differential equations, 03.65.Ge Solutions of wawe equatins: 

bound states 

 
1. INTRODUCTION 

 

In [1], a nonlinear differential equation  

 

(1 + 𝜆𝑥2)𝑥 ̈ − 𝜆𝑥𝑥̇2 + 𝛼2𝑥 = 0 ,        (1.1)                                             

   

describing a nonlinear classical harmonic oscillator was 

studied. Here 𝜆 and 𝛼 are arbitrary real parameters, and 

the parameter 𝜆 characterizes the nonlinearity of the 

system. An important property of this equation is that it 

can be solved exactly. Its solution is a periodic function 

of time 
 

               𝑥(𝑡) = 𝐴sin(𝜔𝑡 + 𝜙),            (1.2)                                          
 

where 𝜙 is an arbitrary constant phase, and the 

oscillator frequency 𝜔 is related to the amplitude 𝐴 as 

follows  

𝜔2 = 
𝛼2

1+𝜆𝐴2  .                           (1.3) 

 

System (1.1) is described by a Lagrangian of the form 

 

𝐿 =  
1

2
 (

1

1+𝜆𝑥2
 ) (𝑥̇2 −  𝛼2𝑥2)       (1.4).                                                

 

Consequently, the nonlinear system (1.1) can be 

regarded as a harmonic oscillator with a position-

dependent mass  

                             𝑚(𝑥) =
1

1+𝜆𝑥2.                     (1.5)                                        

 

The value 𝜆 = 0  corresponds to a conventional linear 

harmonic oscillator with constant unit mass 𝑚0 = 1. 

The classical Hamiltonian of the system (1.1) is equal 

to 

           𝐻 =
1

2
 (1 + 𝜆𝑥2)𝑝2 +

1

2
(

𝛼2𝑥2

1+𝜆𝑥2 ),   (1.6)                                       

 

where 𝑝 = 𝜕𝐿 𝜕𝑥̇⁄ =  𝑥̇(1 + 𝜆𝑥2) is the momentum of 

the system. Note that for negative 𝜆 values, the mass 

function (1.5) has singularities at the points                    

𝑥 = ± 1 √|𝜆|⁄ , therefore, in this case, the system is 

analyzed in the interval 𝑥𝜖(− 1 √|𝜆|⁄ , 1 √|𝜆|⁄ ). 

The quantum version of the nonlinear harmonic 

oscillator (1.1) was considered in [2], and papers [3, 4] 

are devoted to its further study. These authors applied 

various quantization schemes for the classical 

Hamiltonian (1.6). Here, a long-standing problem of 

the quantum model with a pozition-dependent mass is 

the way of ordering the ambiguities that appear due to 

the non-commutativity between the mass function 

𝑚(𝑥) and the momentum operator 𝑝̂ = −𝑖ℏ𝜕𝑥 in the 

definition of the kinetic energy operator. A lot of work 

has been done in articles [3, 4] and important and 

interesting physical and mathematical results have been 

obtained. 

The purpose of this commentary is to discuss and 

clarify some of these mathematical results. In this 

regard, consider the following Hamiltonians with 

position-dependent mass 𝑚(𝑥) 

 

                   𝐻̂ = −
1

2𝑚(𝑥)
𝜕𝑥

2 −
1

√2𝑚(𝑥)
(

1

√2𝑚(𝑥)
)

′

𝜕𝑥 +  𝑉(𝑥),                                     (1.7)   
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                        𝐻̂ = −
1

2𝑚(𝑥)
𝜕𝑥

2 − (
1

2𝑚(𝑥)
)

′

𝜕𝑥 +  𝑉(𝑥),                                         (1.8)  

 

where 𝑉(𝑥) is the potential energy, and the prime denotes the derivative with respect to 𝑥. 

Hamiltonians (1.7) and (1.8) are Hermitian (under certain boundary conditions depending on the form of the 

mass function 𝑚(𝑥)), respectively, with respect to the scalar products 
          

                 ∫ 𝜓∗𝑏

𝑎
(𝑥)𝜙(𝑥)√𝑚(𝑥) 𝑑𝑥  and  ∫ 𝜓∗𝑏

𝑎
(𝑥)𝜙(𝑥)𝑑𝑥,                             (1.9) 

 

where the interval (𝑎, 𝑏)  can be finite or infinite. 

 

2. BRIEF DISCUSSION OF THE RESULTS OF PAPERS [3, 4] 

 

2.1.    Let us now discuss separately and briefly the results of [3, 4]. In [3], a Hamiltonian of the form (1.7) with 

the mass function (1.5) was used  
 

                𝐻̂ =
ℏ2

2𝑚0
[− (1 + 𝜆𝑥2)𝜕𝑥

2 − 𝜆𝑥𝜕𝑥 ] +  
1

2
(

𝑔 𝑥2

1+𝜆𝑥2 ),                               (2.1)   

 

where 𝑔 = 𝑚0𝛼2 + 𝜆ℏ𝛼 and 𝑚0 = сonst, and the parameter 𝜆 can take positive and negative values. Operator 

(2.1) is Hermitian in the space 𝐿2(𝑅, 𝑑𝜌) for 𝜆 > 0  and in the space 𝐿2((− 1 √|𝜆|⁄ , 1 √|𝜆|⁄ ), 𝑑𝜌) for 𝜆 < 0 , 

where 𝑑𝜌 = (1 + 𝜆𝑥2)−1 2⁄  𝑑𝑥.  In this paper, the Schrödinger equation with the Hamiltonian (2.1) is written in 

the form 

                  [(1 + Λ𝑦2)𝜕𝑦
2 + Λ𝑦𝜕𝑦 −

(1+Λ)𝑦2

1+Λ𝑦2 + 2𝑒] 𝜓 = 0,                                  (2.2) 

 

where 𝑦 = √𝑚0𝛼 ℏ⁄  𝑥, Λ =
ℏ

𝑚0𝛼
𝜆 and 𝑒 = 𝐸 ℏ𝛼⁄  are dimensionless quantities. The wave functions are sought in 

the form 𝜓(𝑦, Λ) = ℎ(𝑦, Λ) (1 + Λ𝑦2)−1 (2Λ)⁄ , where the functions ℎ = ℎ(𝑦, Λ) satisfy the second order differential 

equation   

                     (1 + Λ𝑦2)ℎ′′ + (Λ − 2)𝑦ℎ′ + (2𝑒 − 1)ℎ = 0.                            (2.3) 
 

Polynomial solutions of the equation (2.3) ℎ = ℋ𝑛(𝑦, Λ) in [3] were called Λ - dependent Hemite polynomials 

and it was proved that they form an orthogonal system. For them, the Rodrigues formula is obtained 
 

ℋ𝑛(𝑦, Λ) = (−1)𝑛 (1 + Λ𝑦2)1 Λ +1 2⁄⁄ 𝑑𝑛

𝑑𝑦𝑛  [(1 + Λ𝑦2)𝑛−1 Λ−1 2⁄⁄ ],              (2.4) 

 

where 𝑛 = 0,1,2, 3, …  

       Thus, the wave functions of the bound states of the Λ-deformed nonlinear quantum oscillator (2.2) have the 

form 

 𝜓𝑛(𝑦, Λ) = ℋ𝑛(𝑦, Λ)(1 + Λ𝑦2)−1 (2Λ)⁄ , 𝑛 = 0,1,2,3, …                   (2.5) 

 

The energy levels corresponding to these wave functions are not equidistant and equal to 
 

                                 𝑒𝑛 = (𝑛 +
1

2
) −  

1

2
 𝑛2 Λ.                                                      (2.6) 

 

It was shown in [3] that in the case when Λ > 0, number of energy levels 𝑒𝑛 is finite, i.e. 𝑛 = 0,1,2,3, … , 𝑁Λ, 

where 𝑁Λ is the largest integer not exceeding 1 Λ⁄ , and in the case when Λ < 0, it is infinite. In the limit Λ → 0 , 
expressions (2.5) and (2.6) coincide with the corresponding expressions for the linear nonrelativistic harmonic 

oscillator 

           lim
Λ→0 

𝜓𝑛(𝑦, Λ) = 𝐻𝑛(𝑦)𝑒−(1 2)𝑦2⁄    and   lim
Λ→0 

𝑒𝑛 = 𝑛 +
1

2
 ,                     (2.7) 

 

where 𝐻𝑛(𝑦) are Hermite polynomials. In addition, in [3], an expression for the generating function for other Λ-

dependent Hermite polynomials ℋ̃𝑛(𝑦, Λ) is given:  
     

                         (1 + Λ(2𝑡𝑦 − 𝑡2))1 Λ⁄   = ∑ ℋ̃𝑛(𝑦, Λ) 
𝑡𝑛

𝑛!
∞
𝑛=0 .                                (2.8) 

  

The polynomials ℋ𝑛(𝑦, Λ) and  ℋ̃𝑛(𝑦, Λ) coincide in the fundamental part (i.e., in the 𝑦 -dependent polynomial 

part) and differ from each other only by constant factors depending on the number 𝑛.  

 

2.2.    Let us now consider the results of paper [4]. In it, the quantum analogue of the classical nonlinear harmonic 

oscillator (1.1) was described by a Hamiltonian of the form (1.8), in which the mass function 𝑚(𝑥) was taken in 

the following three forms:       
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    𝑚(𝑥) =
1

1+𝜆𝑥2
 ,  𝑚(𝑥) =  (1 +

𝑥2

𝜆
)−1,  𝑚(𝑥) =

2

1−(𝜆𝑥)2
.                             (2.9) 

   

Let us briefly discuss each of these cases separately. 

       Case 1: 𝒎(𝒙) = (𝟏 + 𝝀𝒙𝟐)−𝟏.   In this case, Hamiltonian (1.8) is equal to 
 

           𝐻̂ =
1

2
[− (1 + 𝜆𝑥2)𝜕𝑥

2 − 2𝜆𝑥𝜕𝑥 +  
𝛼2𝑥2

1+𝜆𝑥2].                                    (2.10) 
 

Hamiltonian (2.10) is Hermitian in the space 𝐿2(𝑅, 𝑑𝑥) for 𝜆 > 0 and in the space 𝐿2((− 1 √|𝜆|⁄ , 1 √|𝜆| ), 𝑑𝑥⁄ ) 

for 𝜆 < 0. It was shown in [4] that the eigenfunctions and eigenvalues of this Hamiltonian in terms of the 

dimensionless quantities 𝜁 = √𝛼 𝑥 и 𝜆̃ = 𝜆 𝛼⁄  have the form 
 

                     𝜑𝑛(𝜁, 𝜆̃) = ℋ𝑛(𝜁, 𝜆̃) (1 + 𝜆̃ 𝜁2)−1 (2𝜆̃)⁄ ,                                       (2.11) 
 

 

              𝐸𝑛 = 𝛼 [(𝑛 +
1

2
) −  𝜆̃ (

𝑛(𝑛+1)

2
 )] , 𝑛 = 0,1,2, 3, …,                              (2.12)  

 

where ℋ𝑛 were called 𝜆̃-modified Hermite polynomials. They are given by the Rodrigues formula 
 

   ℋ𝑛(𝜁, 𝜆̃) = (−1)𝑛[(1 + 𝜆̃ 𝜁2)1 𝜆̃⁄ 𝑑𝑛

𝑑𝜁𝑛  (1 + 𝜆̃ 𝜁2)𝑛−1 𝜆̃⁄ ], 𝑛 = 0,1,2,3, …           (2.13)  

 

Moreover, in [4], for several other 𝜆̃-modified Hermite polynomials ℋ̃𝑛(𝜁, 𝜆̃), the following generating function 

was written 
 

                [(1 + 𝜆̃ (2𝑡𝜁 − 𝑡2)]−1 2+⁄ 1 𝜆̃⁄   = ∑  ℋ̃𝑛(𝜁, 𝜆̃)
𝑡𝑛

𝑛!
∞
𝑛=0  .                         (2.14) 

  

The polynomials ℋ𝑛(𝜁, 𝜆̃) and  ℋ̃𝑛(𝜁, 𝜆̃), as in 

[3], differ from each other by constant factors 

depending on the number 𝑛. It should also be noted that 

the wave functions (2.11) 𝜑𝑛(𝜁, 𝜆̃) ≡ 𝜑𝑛(𝑥) for 𝜆 > 0  

are not square integrable in the space 𝐿2(𝑅, 𝑑𝑥), 

i.e.∫ |𝜑𝑛(𝑥)|2𝑑𝑥 = ∞
∞

−∞
 for all 𝑛 > 1 𝜆̃ ⁄ .  

It was shown in [4] that wave functions (2.11) and 

energy levels (2.12) at the harmonic limit 𝜆 → 0  

reproduce the results of a nonrelativistic harmonic 

oscillator with constant mass. 

Сase 2: 𝒎(𝒙) =  (𝟏 +
𝒙𝟐

𝝀
)

−𝟏

. In this case, the 

wave functions, the energy spectrum can be obtained 

by replacing 𝜆 → 𝜆−1 from the corresponding 

expressions for the case 1. 

Сase 3: 𝒎(𝒙) =
𝟐

𝟏−(𝝀𝒙)𝟐.  In this case, the 

Hamiltonian of the nonlinear oscillator (1.8), regardless 

of the sign 𝜆, is Hermitian only in space 

𝐿2((− 1 |𝜆|⁄ , 1 |𝜆|⁄ ), 𝑑𝑥). Its eigenfunctions and 

eigenvalues are also can be obtained from the results of 

the case 1 for 𝜆 < 0 . Therefore, we will only discuss 

the results of the case 1. 

The purpose of this paper is to show that  Λ-

dependent Hermite polynomials ℋ𝑛(𝑦, Λ) (2.4) and  

ℋ̃𝑛(𝑦, Λ) (2.8), as well as the modified Hermite 

polynomials ℋ𝑛(𝜁, 𝜆̃) (2.13) and ℋ̃𝑛(𝜁, 𝜆̃) (2.14), 

introduced respectively in [3] and [4], are not new 

polynomials, but are, for Λ < 0 and 𝜆̃ < 0 , the  

Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥), 𝑛 = 0,1,2,3, …, and 

for Λ > 0 and 𝜆̃ > 0, they are special cases of pseudo-

Jacobi polynomials 𝑃𝑛(𝑥; 𝜈, 𝑁), 𝑛 = 0,1,2,3, … 𝑁, 

corresponding to the value of the parameter 𝜈 = 0. 

(Compare with the results of papers [5 - 7].)  

 In addition, in this paper we will construct a 

generating function for the polynomials 𝑃𝑛(𝑥; 0, 𝑁) and 

establish their connection with the polynomials 𝐶𝑛
𝜈(𝑥). 

Our other goal is to construct exactly solvable 

potentials associated with the pseudo-Jacobi 

polynomials. 

The organization of the paper is as follows. 

Section 2 briefly discusses results obtained in [3, 4].) In 

Section 3, some basic properties of Hermite, 

Gegenbauer and pseudo-Jacobi polynomials are 

recalled. These properties include their hypergeometric 

expressions, orthogonality and recurrence relations, 

and differential equations. They are used throughout 

the main text. Section 4 is devoted to obtaining the main 

results of this work. Conclusion is presented in Section 

5. In Appendices 1 and 2, we study two limit relations 

concerning the properties of orthogonal polynomials. 

Appendix 3 is devoted to the construction of exactly 

solvable potentials associated with pseudo-Jacobi 

polynomials. 

 

3. BASIC PROPERTIES OF HERMITE, 

GEGENBAUER AND PSEUDO-JACOBI 

POLYNOMIALS 

 

In this section, we give the main formulas for 

Hermite, Gegenbauer and pseudo-Jacobi polynomials. 

All of these can be found in [8,9], but it is convenient 

to list them here for further reference.  

Hermite polynomials are defined in terms of 𝐹02  

hypergeometric functions as follows: 

                    

  𝐻𝑛(𝑥) = (2𝑥)𝑛 𝐹0 (−
𝑛

2
, −

(𝑛−1)

2
−

| −
1

𝑥2)2 .                                         (3.1) 
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They are exact solutions of the following second-order differential equation 
 

                 𝑦′′(𝑥) − 2𝑥𝑦′(𝑥) + 2𝑛𝑦(𝑥) = 0,    𝑦(𝑥) = 𝐻𝑛(𝑥).                               (3.2) 
 

Hermite polynomials satisfy an orthogonality relation on the interval (−∞, ∞): 
 

          ∫ 𝑒−𝑥2
𝐻𝑚(𝑥)𝐻𝑛(𝑥)𝑑𝑥 =

∞

−∞
𝑑H𝑛

2 𝛿𝑚𝑛       𝑑H𝑛
2 = 2𝑛𝑛! √𝜋                        (3.3) 

 
 

and a recurrence relation of the form   

                       𝐻𝑛+1(𝑥) = 2𝑥𝐻𝑛(𝑥) − 2𝑛𝐻𝑛−1(𝑥).                                            (3.4) 
 

 

We also write for them the Rodrigues formula and the generating function 
 

              𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥2
 

𝑑𝑛

𝑑𝑥𝑛  𝑒−𝑥2
, 𝑛 = 0,1,2, … ,                                        (3.5) 

 

                           𝑒2𝑥𝑡−𝑡2
= ∑  ∞

𝑛=0 𝐻𝑛(𝑥)
𝑡𝑛

𝑛!
.                                                            (3.6) 

 

Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥) are defined in terms of 𝐹12  hypergeometric function as follows: 

 

                             𝐶𝑛
𝜈(𝑥) =

(2𝜈)𝑛

 𝑛!
 𝐹1 (

−𝑛, 𝑛 + 2𝜈

𝜈 +
1

2

|
1−𝑥

2
)2 ,  𝜈 ≠ 0                                   (3.7) 

 

and are exact solutions of the second-order differential equation 
 

 (1 − 𝑥2)𝑦′′(𝑥) − (2𝜈 + 1)𝑥𝑦′(𝑥) + 𝑛(𝑛 + 2𝜈)𝑦(𝑥) = 0 ,  𝑦(𝑥) = 𝐶𝑛
𝜈(𝑥).              (3.8) 

 

They satisfy an orthogonality condition on the interval (-1,1): 
  

∫ (1 − 𝑥2)𝜈−
1
2

1

−1

 𝐶𝑚
𝜈 (𝑥)𝐶𝑛

𝜈(𝑥)𝑑𝑥 = 𝑑C𝑛
2 𝛿𝑚𝑛,    

 

                      𝑑C𝑛
2 =

𝜋Γ(𝑛+2𝜈)21−2𝜈

{Γ(𝜈)}2(𝑛+𝜈)𝑛!
 ,   𝜈 > −

1

2
   and  𝜈 ≠ 0.                                       (3.9) 

 

We also write down the Rodrigues formula for them and the generating function 
 

          𝐶𝑛
𝜈(𝑥) = (−1)𝑛 (2𝜈)𝑛

(𝜈+
1

2
)𝑛 2𝑛 𝑛!

(1 − 𝑥2)−𝜈+
1

2  
𝑑𝑛

𝑑𝑥𝑛[(1 − 𝑥2)𝑛+𝜈−
1

2],  𝑛 = 0,1,2,3 …,          (3.10)                                                                 

 

                     (1 − 2𝑥𝑡 + 𝑡2) −𝜈 = ∑  𝐶𝑛
𝜈(𝑥)𝑡𝑛∞

𝑛=0  .                                           (3.11) 
 

Pseudo-Jacobi polynomials 𝑃𝑛(𝑥; 𝜈, 𝑁) are defined in terms of  𝐹12  hypergeometric functions as follows: 
 

             𝑃𝑛(𝑥; 𝜈, 𝑁) =
(−2𝑖)𝑛 (−𝑁+𝑖𝜈)𝑛

(𝑛−2𝑁−1)𝑛
𝐹1 (

−𝑛, 𝑛 − 2𝑁 − 1
−𝑁 + 𝑖𝜈

|
1−𝑖𝑥

2
)2 ,    𝑛 = 0,1,2, … , 𝑁.      (3.12)                                  

                                                                                                                                                      

Herein, 𝜈 is an arbitrary real parameter and 𝑁 is an arbitrary positive integer, т. е. 𝑁 = 1,2,3, … The polynomials 

𝑃𝑛(𝑥; 𝜈, 𝑁) are real polynomials in 𝑥 of degree 𝑛, and 𝑛 is restricted by 𝑁. They are also the exact solution of a 

second-order differential equation, namely 
 

   (1 + 𝑥2)𝑦′′(𝑥) + 2(𝜈 − 𝑁𝑥)𝑦′(𝑥) − 𝑛(𝑛 − 2𝑁 − 1)𝑦(𝑥) = 0,   𝑦(𝑥) = 𝑃𝑛(𝑥; 𝜈, 𝑁)     (3.13) 

               

and also satisfy an orthogonality relation on the interval (−∞, ∞): 
 

                       ∫ (1 + 𝑥2)−𝑁−1𝑒2𝜈 arctanx𝑃𝑚(𝑥; 𝜈, 𝑁)
∞

−∞
𝑃𝑛(𝑥; 𝜈, 𝑁)𝑑𝑥 = 𝑑N𝑛

2 (𝜈)𝛿𝑛𝑚,  
 

                                        𝑑N𝑛
2 (𝜈) = 𝜋𝑛!

Γ(2𝑁+1−2𝑛)Γ(2𝑁+2−2𝑛)22𝑛−2𝑁

Γ(2𝑁+2−𝑛)|Γ(𝑁+1−𝑛+𝑖𝜈)|2 .                                     (3.14) 

 

We also write down for pseudo-Jacobi polynomials a Rodrigues-type formula    

         

                         𝑃𝑛(𝑥; 𝜈, 𝑁) =
(1+𝑥2)𝑁+1𝑒−2𝜈arctan𝑥

(𝑛−2𝑁−1)𝑛

𝑑𝑛

𝑑𝑥𝑛 [(1 + 𝑥2)𝑛−𝑁−1𝑒2𝜈arctan𝑥]                 (3.15)                                                                                                                                     
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and a recurrence relation  

𝑃𝑛+1(𝑥; 𝜈, 𝑁) = 𝐴𝑛𝑃𝑛(𝑥; 𝜈, 𝑁) + 𝐵𝑛𝑃𝑛−1(𝑥; 𝜈, 𝑁), 
                              

                    𝐴𝑛(𝑥, 𝜈) = 𝑥 −
𝜈(𝑁+1)

(𝑛−𝑁−1)(𝑛−𝑁)
,  𝐵𝑛(𝜈) =

𝑛(𝑛−2𝑁−2)(𝑛−𝑁−1−𝑖𝜈)(𝑛−𝑁−1+𝑖𝜈)

(2𝑛−2𝑁−3)(𝑛−𝑁−1)2(2𝑛−2𝑁−1)
.         (3.16)                           

 

We emphasize that the following limit relations hold between the Gegenbauer and Hermite polynomials, as well 

as between the pseudo-Jacobi and Hermite polynomials 

                                       lim
𝜈→∞

𝜈−
𝑛

2   𝐶𝑛

𝜈+
1

2 (
𝑥

√𝜈
) =

1

𝑛!
𝐻𝑛(𝑥),                                                  (3.17) 

 

                                      lim
𝑁→∞

𝑁
𝑛

2𝑃𝑛 (
𝑥

√𝑁
;  𝜈, 𝑁) =

1

2𝑛
𝐻𝑛(𝑥),                                             (3.18) 

 

Relation (3.17) is given in [6], and relation (3.18) can be proved by the method of mathematical induction. 

 

4. MAİN RESULTS 

        In this section, we present the main results of our work. Consider first the polynomials defined by formulas 

(2.4) and (2.8) and introduced in [3]. 

       1) Let be Λ < 0. Comparing of the Rodrigues formula for Λ-dependent polynomials ℋ𝑛(𝑦, Λ) (2.4) with 

Rodrigues formula for the Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥) (3.10), we obtain a formula that expresses the 

polynomials ℋ𝑛(𝑦, Λ) in terms of the Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥)  

 

      ℋ𝑛(𝑦, Λ) = 2𝑛 𝑛!
(

1

|Λ|
+

1

2
)

𝑛 

(
2

|Λ|
)

𝑛 

 (|Λ|)𝑛 2⁄  𝐶𝑛
1 |Λ|⁄

(√|Λ|𝑦) ,   Λ < 0.                      (4.1)  

 

      2) Let be Λ > 0. Comparison of the Rodrigues formula (2.4) with Rodrigues formula for the pseudo-Jacobi 

polynomials 𝑃𝑛(𝑥; 0, 𝑁) (3.15) gives us a relation connecting the polynomials ℋ𝑛(𝑦, Λ) in terms of the pseudo-

Jacobi polynomials 𝑃𝑛(𝑥; 0, 𝑁), i.e. 
 

       ℋ𝑛(𝑦, Λ) = (−1)𝑛  (𝑛 −
2

Λ
)

𝑛 
Λ𝑛 2⁄  𝑃𝑛 (√Λ𝑦; 0,

1

Λ
−

1

2
) ,   Λ > 0.               (4.2) 

 

     3) Let be Λ < 0. Let us now compare the generating function for other Λ-dependent polynomials ℋ̃𝑛(𝑦, Λ) 

(2.8) with a generating function for the Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥) (3.11). Then we obtain the relation 

between the ℋ̃𝑛(𝑦, Λ) polynomials and the Gegenbauer polynomials 
 

                     ℋ̃𝑛(𝑦, Λ) = |Λ|
𝑛

2  𝑛! 𝐶𝑛

1

|Λ| (√|Λ|𝑦),  Λ < 0.                                      (4.3)  
 

     4) Let be Λ > 0. To find the explicit form of the Λ-dependent polynomials ℋ̃𝑛(𝑦, Λ) for Λ > 0 we will 

proceed as follows. Analysis of the properties of polynomials ℋ̃𝑛(𝑦, Λ) by formula (2.8) allows us to conclude 

that these polynomials are proportional to the pseudo-Jacobi polynomials 𝑃𝑛 (√Λ𝑦; 0,
1

Λ
−

1

2
), i.e. 

 

  ℋ̃𝑛(𝑦, Λ) = 𝑐𝑛𝑃𝑛 (√Λ𝑦; 0,
1

Λ
−

1

2
),  𝑛 = 0 ,1, 2, 3, … ,

1

Λ
+

1

2
 .                   (4.4) 

                             

Here 𝑐𝑛 are some coefficients. To find these coefficients, we compare the recurrence relation for the polynomials 

ℋ̃𝑛(𝑦, Λ), obtained in [3], with the recurrence relation for the polynomials 𝑃𝑛(√Λ𝑦; 0,
1

Λ
−

1

2
) (3.16). These 

recurrence relations are of the form 
 

                     ℋ̃𝑛+1 = 2𝑦(1 − 𝑛Λ)ℋ̃𝑛 − 𝑛[2 − (𝑛 − 1)Λ]ℋ̃𝑛−1,                         (4.5) 

 

                           𝑃𝑛+1 = √Λ𝑦𝑃𝑛 +
𝑛(𝑛−1−

2

Λ
)

(2𝑛−2−
2

Λ
)(2𝑛−

2

Λ
)

𝑃𝑛−1,                                   (4.6) 

 

where 𝑛 ≥ 1. Formulas (4.4) - (4.6) lead to a simple recurrence relation for the coefficients 𝑐𝑛 as 𝑐𝑛+1 =
2

√Λ
(1 −

𝑛Λ)𝑐𝑛 . It has the following solution  

                                    𝑐𝑛(Λ) = (−2√Λ)
𝑛

(−
1

Λ
)

𝑛
.                                                (4.7)  
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Thus, according to (4.4) and (4.7) for Λ > 0 polynomials ℋ̃𝑛(𝑦, Λ) up to constant coefficients coincide with the 

pseudo-Jacobi polynomials 𝑃𝑛(√Λ𝑦; 0,
1

Λ
−

1

2
): 

 

ℋ̃𝑛(𝑦, Λ) = (−2√Λ)
𝑛

(−
1

Λ
)

𝑛
𝑃𝑛 (√Λ𝑦; 0,

1

Λ
−

1

2
),  Λ > 0.                (4.8) 

 

Let us now make two remarks: 

a) according to the definition of the pseudo-Jacobi polynomials (3.12), in formulas (4.2) and (4.8) the expression 
1

Λ
−

1

2
  is equal to a positive integer, i.e. 

1

Λ
−

1

2
= 1, 2, 3, …, and 𝑛 = 0, 1,2,3, … ,

1

Λ
−

1

2
. Therefore, as was noted in 

[3], for Λ > 0  the number of energy levels of the nonlinear oscillator (2.2) is bounded. It is equal to 
1

Λ
+

1

2
 ;   

b) the ratio ℎ𝑛(Λ) = ℋ𝑛(𝑦, Λ) ℋ̃𝑛(𝑦, Λ)⁄  of the polynomials (4.1) and (4.3), as well as of the polynomials (4.2) 

and (4.8) are equal to  

ℎ𝑛(Λ < 0) = 2𝑛 (
1

2
−

1

Λ
)

𝑛 
(−

2

Λ
)

𝑛 
,⁄  

 

 ℎ𝑛(Λ > 0) = (𝑛 −
2

Λ
)

𝑛 
[2𝑛 (−

1

Λ
)

𝑛
]⁄ ,                                            (4.9) 

 

respectively. If we ignore the sign of the parameter Λ , then ℎ𝑛(Λ < 0) and ℎ𝑛(Λ > 0)  will coincide. 

5) Since we have generating function (2.8) for the polynomials ℋ̃𝑛(𝑦, Λ), using relation (4.8), which is valid 

for Λ > 0, we can obtain the generating function for the pseudo-Jacobi polynomials 𝑃𝑛(𝑥; 0, 𝑁).  It has the form                                                                                                                              
 

        (1 + 2√
2

2𝑁+1
𝑡𝑥 −

2

2𝑁+1
𝑡2)

𝑁+
1

2

= ∑
𝑡𝑛

𝑛!
(−2√

2

2𝑁+1
)

𝑛

∞
𝑛=0 (−

2𝑁+1

2
)

𝑛
𝑃𝑛(𝑥; 0, 𝑁).      (4.10)  

                                                                                                                        

If in (4.10) we replace 𝑥 on 𝑥 √𝑁⁄  and go to the limit 𝑁 → ∞ , then we obtain, as expected, the generating function 

for the Hermite polynomials 𝐻𝑛(𝑥) (3.6) (the proof is given in Appendix 1). 

6) Consider now the polynomials (2.13) and (2.14) [4]. Comparison of the  Rodrigues formula for the 

polynomials ℋ𝑛(𝜁, 𝜆̃) (2.13) for 𝜆̃ < 0 with Rodrigues formula for Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥)  (3.10), and 

for 𝜆̃ > 0 with Rodrigues formula for pseudo-Jacobi polynomials 𝑃𝑛(𝑥; 0, 𝑁) (3.15) gives the following relations 

between these polynomials 

   ℋ𝑛(𝜁, 𝜆̃) = 2𝑛 𝑛!
(1+

1

|𝜆̃|
)

𝑛 

(1+
2

|𝜆̃|
)

𝑛 

 (|𝜆̃|)𝑛 2⁄  𝐶𝑛
1 2⁄ +1 |𝜆̃| ⁄

(√|𝜆̃|𝜁),    𝜆̃ < 0,                 (4.11) 

 

   ℋ𝑛(𝜁, 𝜆̃) = (−1)𝑛  (𝑛 + 1 −
2

 𝜆̃
)

𝑛 
 (𝜆̃)𝑛 2⁄  𝑃𝑛 (√𝜆̃ 𝜁; 0,

1

 𝜆̃
− 1),    𝜆̃ > 0.         (4.12)  

                  

7) To find the connection between the polynomials ℋ̃𝑛(𝜁, 𝜆̃) (2.14) with Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥) 

(3.10) and pseudo-Jacobi polynomials 𝑃𝑛(𝑥; 0, 𝑁) (3.15) we proceed as follows. Let us compare the generating 

function for ℋ̃𝑛(𝜁, 𝜆̃) (2.14) for 𝜆̃ < 0 with a generating function for 𝐶𝑛
𝜈(𝑥)  (3.11), and for 𝜆̃ > 0 with a  

generating function for 𝑃𝑛(𝑥; 0, 𝑁) (4.10). We get  

            ℋ̃𝑛(𝜁, 𝜆̃) = n! |𝜆̃|
𝑛

2  𝐶𝑛

1

|𝜆̃|̃
+

1

2
(√|𝜆̃|𝜁),    𝜆̃ < 0,                                   (4.13)   

  

         ℋ̃𝑛(𝜁, 𝜆̃) = (−2 √𝜆̃)𝑛(
1

2
−

1 

𝜆̃
)𝑛 𝑃𝑛 (√𝜆̃𝜁; 0,

1

𝜆̃
− 1),     𝜆̃ > 0.                  (4.14)  

 

In formulas (4.12) and (4.14), the parameter 𝜆̃ ranges over discrete values 𝜆̃ =
1

2
 ,

1

3
 ,

1

4
 ,…, and the values of the 

number 𝑛 are bounded from above, i.e. 𝑛 = 0, 1,2,3, … ,1 𝜆̃⁄ − 1. Thus, like the system (2.2), the system 

described by Hamiltonian (2.10), for 𝜆̃ > 0 also has a finite number of levels equal to 1 𝜆̃⁄  .    

Similarly to (4.9), we now find the ratio ℎ𝑛(𝜆̃) = ℋ𝑛(𝜁, 𝜆̃) ℋ̃𝑛(𝜁, 𝜆̃)⁄  of the polynomials (4.11) and (4.13), 

as well as of the polynomials (4.12) and (4.14). They are equal to  

 

              ℎ𝑛(𝜆̃ < 0) = 2𝑛  
(1−

1

𝝀̃
)

𝑛 

(1−
2

𝝀̃
)

𝑛 

,    ℎ𝑛(𝜆̃ > 0) = (𝑛 + 1 −
2

 𝜆̃
)

𝑛 
[2 𝑛(

1

2
−

1 

𝜆̃
)𝑛]⁄ ,                  (4.15)         

respectively. Here, as in the case (4.9), if we ignore the sign of the parameter 𝜆̃ , then ℎ𝑛(𝜆̃ < 0)  and ℎ𝑛(𝜆̃ > 0) 

will coincide. 
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8) We can now write out the explicit form of the orthonormal wave functions 𝜓𝑛(𝑦, Λ) (2.5) and 𝜑𝑛(𝜁, 𝜆̃) 

(2.11). The normalized wave functions have the following form: 1) for Λ < 0 and 𝜆̃ < 0 
 

 

   𝜓𝑛(𝑦, Λ) = 2−1 Λ⁄  Γ (−
1

Λ
) (

√−Λ  n! (𝑛−
1

Λ
)

2𝜋 Γ(𝑛−
2

Λ
)

)

 1 2⁄

(1 + Λ𝑦2)−1 (2Λ)⁄ −1 4⁄ 𝐶𝑛
−1 Λ⁄

(√−Λ𝑦),       (4.16)   

 

   

             𝜑𝑛(𝜁, 𝜆̃) = 2−1 𝜆⁄  Γ (−
1

𝜆
+

1

2
) (

√−𝜆 n! (𝑛+
1

2
−

1

𝜆̃
)

𝜋 Γ!(𝑛+1−
2

𝜆̃
)

)

 1 2⁄

(1 + 𝜆̃𝜁2)
−1 (2𝜆)⁄

𝐶𝑛
−1 𝜆+1 2⁄⁄

(√−𝜆̃𝜁) ;            (4.17)  

  

2) for Λ > 0 and 𝜆̃ > 0 

 

  𝜓𝑛(𝑦, Λ) = 21 Λ−1−𝑛⁄
Γ(

1

Λ
+

1

2
−𝑛)

Γ(
2

Λ
−2𝑛)

 (
√Λ  Γ(

2

Λ
+1−2𝑛)

𝜋 𝑛!(
1

Λ
−𝑛)

)

 1 2⁄

(1 + Λ𝑦2)−1 (2Λ)⁄ −1 4⁄  𝑃𝑛 (√Λ𝑦; 0,
1

Λ
−

1

2
),   (4.18)    

 

  𝜑𝑛(𝜁, 𝜆̃) = 21 𝜆̃−1−𝑛⁄
Γ(

1

𝜆̃
−𝑛)

Γ(
2

𝜆̃
−1−2𝑛)

 (
√𝜆̃  Γ(

2

𝜆̃
−𝑛)

𝜋 𝑛!(
2

𝜆̃
−1−2𝑛)

)

 1 2⁄

(1 + 𝜆̃𝜁2)
−1 (2𝜆̃)⁄

 𝑃𝑛 (√𝜆̃𝜁; 0,
1

𝜆̃
− 1).  (4.19)     

 

These wave functions are normalized by the conditions: 1) for Λ < 0 and 𝜆̃ < 0 

 

                       ∫ 𝜓𝑛
∗𝑎Λ

−𝑎Λ
(𝑦, Λ)𝜓𝑚(𝑦, Λ)𝑑𝑦 = ∫  𝜑𝑛

∗𝑎𝜆

−𝑎𝜆
(𝜁, 𝜆̃)𝜑𝑚(𝜁, 𝜆̃)𝑑𝜁 = 𝛿𝑛𝑚,                    (4.20)                                           

 

2) for Λ > 0 and 𝜆̃ > 0 
 

                        ∫ 𝜓𝑛
∗∞

−∞
(𝑦, Λ)𝜓𝑚(𝑦, Λ)𝑑𝑦 = ∫  𝜑𝑛

∗∞

−∞
(𝜁, 𝜆̃)𝜑𝑚(𝜁, 𝜆̃)𝑑𝜁 = 𝛿𝑛𝑚,                     (4.21)                        

 

where 𝑎Λ = (|Λ|)−1 2⁄  and 𝑎𝜆 = (𝛼 |𝜆̃|⁄ )
1 2⁄

. In calculating them, we used the orthogonality conditions for the 

Gegenbauer (3.9) and pseudo-Jacobi polynomials (3.14). 

      9) We can also establish a connection between the Gegenbauer polynomials 𝐶𝑛
𝜈(𝑥) (3.7) and pseudo-Jacobi 

polynomials 𝑃𝑛(𝑥; 0, 𝑁) (3.12). To do this, we first discuss some of the results of [10]. In this paper, the quantum 

version of the nonlinear classical harmonic oscillator (1.1) was also investigated. In this case, it is described by the 

Schrödinger equation 

        [(1 − 𝜆𝑥2)𝜕𝑥
2 + 2𝑎𝜆𝑥𝜕𝑥 + 𝑏 +  

𝑐𝑥2

1−𝜆𝑥2] 𝜓 = 0,                                        (4.22) 

 

where 𝑎, 𝑏, 𝑐 are some constant parameters, and 𝑐 < 0. Their values in [10] defined as 

 

        𝑎 = 𝛾̅ − 𝛼̅ − 1, , 𝑏 = 2𝜆𝛾̅ +
2𝐸

ℏ2 , 𝑐 = −(2𝛼𝛾̅̅̅̅  𝜆2 +
𝑘

ℏ2).                               (4.23) 

 

      In the case λ > 0 the solution to equation (4.22) was analyzed in detail in [10]. The case λ < 0 requires 

additional analysis. In this case, the eigenfunctions of the equation (4.22) in [10] are expressed in terms of the 

Gegenbauer polynomials as follows  

                  𝜓𝑛(𝑥) = 𝑁𝑛(1 + |𝜆|𝑥2)
𝑎+1

2 𝑃𝑛−𝜇
𝜇

(𝑖√|𝜆|𝑥),                                    (4.24) 
 

       𝑃𝑛−𝜇
𝜇 (𝑖𝑥) =

(−1)
𝑛−𝜇

2  2𝑛−𝜇𝑛!Γ(𝑛−𝜇+
1

2
)

√𝜋 Γ(1+2𝑛−2𝜇)
(1 + 𝑥2)

𝑛−𝜇

2 𝐶𝑛
𝜇−𝑛

(
𝑥

√1+𝑥2
).                      (4.25) 

 

Here 𝑃𝜈
𝜇(𝑧) are Legendre functions of the first kind [11] 

        𝑃𝜈
𝜇(𝑧) =

2𝜇(𝑧2−1)
−

𝜇
2  

 Γ(1−𝜇)
𝐹1 (

−𝜈 − 𝜇, 1 + 𝜈 − 𝜇
1 − 𝜇

|
1−𝑧

2
)2 .                            (4.26) 

 

Hence, if we put 𝜈 + 𝜇 = 𝑛 = 0 ,1, 2, 3, … in (4.26) then the hypergeometric function will be a polynomial and we 

get 

     𝑃𝑛−𝜇
𝜇 (𝑖𝑥) =

2𝜇(−1)−
𝜇
2  

 Γ(1−𝜇)
(1 + 𝑥2)−

𝜇

2 𝐹1 (
−𝑛, 𝑛 + 1 − 2𝜇

1 − 𝜇
|

1−𝑖𝑥

2
)2 .                    (4.27) 
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On the other hand, in Appendix 2 we show that in the case λ < 0 the eigenfunctions of equation (4.22) are 

expressed in terms of the pseudo-Jacobi polynomials 𝑃𝑛(𝑥; 0, 𝑁). Therefore, there must be a connection between 

the polynomials 𝑃𝑛(𝑥; 0, 𝑁) and  𝐶𝑛
𝜈(𝑥). Let's find this connection. From equalities (3.12) and (4.27) it follows: 

 

        𝑃𝑛−𝜇
𝜇 (𝑖𝑥) =

2𝜇(−1)−
𝜇
2  (𝑛+1−2𝜇)𝑛

 Γ(1−𝜇)(−2𝑖)𝑛(1−𝜇)𝑛
(1 + 𝑥2)−

𝜇

2𝑃𝑛(𝑥; 0, 𝜇 − 1).                   (4.28) 

 

Equating now the expressions contained in formulas (4.25) and (4.28), we find the desired connection 
 

 

   𝑃𝑛(𝑥; 0, 𝑁) = (−1)𝑛𝑛! 2−2𝑛  (−2𝑁−1)𝑛

 (−𝑁−
1

2
)

𝑛
 (−𝑁)𝑛

(1 + 𝑥2)
𝑛

2𝐶𝑛
𝑁+1−𝑛 (

𝑥

√1+𝑥2
).         (4.29) 

 
 

This shows that the orthogonality condition for the 

pseudo-Jacobi polynomials (3.14) for 𝜈 = 0 reduces to 

the orthogonality condition for the Gegenbauer 

polynomials (3.9). 

 

5. CONCLUSION 

 

In this paper, for clarification, we discussed some 

of the mathematical results obtained in [3] and [4]. In 

these papers, a quantum version of an exactly solvable 

one-dimensional nonlinear classical harmonic 

oscillator which was initially considered by Mathews 

and Lakshmanan [1] was studied. These authors have 

applied various quantization schemes. The wave 

functions of the considered nonlinear model of the 

harmonic oscillator in [3] were expressed in terms of Λ 

- dependent Hermite polynomials ℋ𝑛(𝑦, Λ), and in [4] 

in terms 𝜆̃ - dependent Hermite polynomials ℋ𝑛(𝜁, 𝜆̃), 

where parameter Λ (or 𝜆̃) characterizes the nonlinearity 

of the oscillator. The authors of [3] and [4] also called 

them modified Hermite polynomials. Here we have 

shown that these modified Hermite polynomials are not 

new polynomials, but in fact they are for Λ<0 and 𝜆̃<0 

Gegenbauer polynomials, and for  Λ >0 and  𝜆̃ >0 are  

pseudo-Jacobi polynomials when the second parameter 

of the pseudo-Jacobi polynomial is zero: 𝜈 = 0. We 

also constructed a generating function for the pseudo-

Jacobi polynomials 𝑃𝑛(𝑥; 0, 𝑁). 
On the other hand, an analysis of the mathematical 

results of [10], where a quantum nonlinear harmonic 

oscillator was also studied, allowed us to establish a 

new connection between the pseudo-Jacobi and 

Gegenbauer polynomials. Here we have also shown 

that the solutions of equation (4.22) for 𝜆 > 0 can be 

expressed in terms of pseudo-Jacobi polynomials. 

In addition, using the well-known transformation 

method, we have constructed two exactly solvable 

potentials associated with pseudo-Jacobi polynomials. 

These potentials were obtained earlier by other 

methods (see [13, 14, 18]). For them, we obtained an 

energy spectrum and wave functions that agree with the 

literature data. 

  

 APPENDIX 1 

 

       Let us prove that if in the generating function 

(4.10) for pseudo-Jacobi polynomials we replace 𝑥 on 

𝑥 √𝑁⁄    and go to the limit 𝑁 → ∞ , then we obtain the 

generating function for the Hermite polynomials 𝐻𝑛(𝑥) 

(3.6).  We will use the following approximate          

(|𝑥| ≪ 1) and asymptotic (|𝑧| → ∞, |arg𝑧| < 𝜋) 

equalities: 
 

   ln(1 + 𝑥) ≅ 𝑥 −
𝑥2

2
 ,

Γ(𝑧+𝑎)

Γ(𝑧)
≅  𝑧𝑎 .        (A.1)                                         

 

Let us first calculate the limit of the left-hand side of 

(4.10). We have: 

 

          lim
𝑁→∞

𝑒
(𝑁+

1

2
) ln (1+2√

2

𝑁(2𝑁+1)
𝑡𝑥−

2

2𝑁+1
𝑡2)

== lim
𝑁→∞

𝑒(𝑁+
1

2
) (

2

𝑁 
𝑡𝑥−

𝑡2

𝑁
) = 𝑒  2𝑡𝑥−𝑡2

.            (A.2) 

 

To calculate the limit on the right-hand side of (4.10), it is sufficient to calculate the limit of the expression under 

the sum sign and depending on the number 𝑁. We have: 

 

lim
𝑁→∞

(−2)𝑛(𝑁 + 1 2⁄ )−𝑛(−𝑁 − 1 2⁄ )𝑛𝑃𝑛(𝑥 √𝑁⁄ ; 0, 𝑁) = 

 

= lim
𝑁→∞

(−
2

√𝑁
)

𝑛 (−N−1 2⁄ )Γ(𝑛−𝑁+1 2⁄ )

(𝑛−𝑁−1 2⁄ )Γ(−𝑁+1 2⁄ )
𝑃𝑛(𝑥 √𝑁⁄ ; 0, 𝑁) = 

                                                

                = lim
𝑁→∞

(−
2

√𝑁
)

𝑛
(−𝑁)𝑛𝑃𝑛(𝑥 √𝑁⁄ ; 0, 𝑁) = lim

𝑁→∞
(2√𝑁)

𝑛
𝑃𝑛(𝑥 √𝑁⁄ ; 0, 𝑁).          (A.3)   

                

The last limit, according to equality (3.18), is equal to the Hermite polynomial 𝐻𝑛(𝑥). Thus, we have proved that 

after replacing 𝑥 on 𝑥 √𝑁⁄  and going to the limit 𝑁 → ∞ in equality (3.18), it coincides with formula (3.6). 
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APPENDIX 2   

 

Let us find a solution to equation (4.22) in the case λ < 0 . In terms of the new variable 𝜉 = √|𝜆|𝑥 equation 

(4.22) takes the form 

                   [(1 + 𝜉2)𝜕𝜉
2 − 2𝑎𝜉𝜕𝜉 + 𝑏̅ +  

𝑐̅𝜉2

1+𝜉2
] 𝜓 = 0,                                (A.4) 

 

where we have introduced the following notations 𝑏̅ = 𝑏 |𝜆|⁄  and 𝑐̅ = 𝑐 𝜆2⁄ . To simplify equation (A.4), we put 
 

                          𝜓 = (1 + 𝜉2)(𝑎+1) 2⁄  𝜙(𝜉),                                               (A.5) 
 

where the function 𝜙(𝜉) obeys the following differential equation 
 

   (𝜕𝜉
2 +

𝜏̃

𝜎
𝜕𝜉 +

𝜎̃

𝜎2) 𝜙 = 0,                                                 (A.6) 

 

in which 𝜎 = 1 + 𝜉2, 𝜏̃ = 2𝜉, 𝜎̃ = 𝑐0 + 𝑐2𝜉2 . For the coefficients 𝑐0 and 𝑐2 we have  
 

                    𝑐0 = 𝑏̅ + 𝑎 + 1,   𝑐2 =  𝑏̅ + 𝑐̅ − 𝑎(𝑎 + 1).                              (A.7) 
     

Equation (A.6) will be solved by the Nikiforov-Uvarov method [12], that is, we are looking for its solution in the 

form: 

                          𝜙 = 𝜑(𝜉) 𝑦(𝜉),  𝜑 = 𝑒
∫

𝜋(𝜉)

𝜎(𝜉)
 𝑑𝜉

,                                          (A.8) 

 

where 𝜋 = 𝜋0 +  𝜋1𝜉 is an arbitrary polynomial of at most first degree, i.e. 𝜋0,1 = const. Then, one obtains the 

following second-order differential equation for the function 𝑦(𝜉):  
 

                     𝑦′′ +
𝜏̅

𝜎
𝑦′ +

 𝜎̅

𝜎2 𝑦 = 0,                                                   (A.9) 

 

with  𝜏̅(𝜉) = 𝜏̃(𝜉) + 2𝜋(𝜉),  𝜎(𝜉) = 𝜎̃ + 𝜋2 + 𝜎𝜋′.  We choose a polynomial 𝜋 from the condition that the 

polynomial  𝜎(𝜉) be divided without remainder by  𝜎(𝜉), i.e. 𝜎 = 𝜅𝜎,  𝜅 = const. As a result we obtain the 

quadratic equation for the definition of a polynomial  𝜋(𝜉)  and a constant  𝜅: 
 

                       𝜋2 − (𝜎′ − 𝜏̃)𝜋 − 𝛿𝜎 + 𝜎̃ = 0,   𝛿 = 𝜅 − 𝜋′.                             (A.10) 

From here, we find 

                                  𝜋 = 𝑒√𝛿𝜎 − 𝜎̃  ,   𝑒 = ±1.                                                 (A.11)  
 

Since  𝜋(𝜉) is a polynomial, the discriminant 𝐷 of a polynomial of the second degree standing under the root in 

(A.11) must be equal to zero. The equation 𝐷 =  0 allows us to find a constant 𝛿. In our case we have two solutions: 

1) 𝛿 = 𝑐0 ,  and  2) 𝛿 = 𝑐2. The physical meaning has the first solution. Thus, 𝜋 = 𝑒𝜇𝜉,   𝜇 = √𝑐0 − 𝑐2.     

       After determination 𝜋, we find 𝜑(𝜉),  𝜏̅(𝜉)  and  𝜅. For 𝜑(𝜉) we obtain the following expression: 𝜑(𝜉) =

(1 + 𝜉2)
𝑒𝜇

2  . From the requirement of finiteness 𝜑(𝜉) at points  𝜉 = ±∞,  i.e. from the condition  lim
𝜉→±∞

𝜑(𝜉) = 0  

(square integrability condition), we get  𝑒𝜇 < 0. This means that 𝑒 = −1 and 𝜇 > 0. Thus, we obtain 𝜋 = −𝜇𝜉 

and 

        𝜑(𝜉) = (1 + 𝜉2)−
𝜇

2 ,  𝜇 = √𝑐0 − 𝑐2 = √(𝑎 + 1)2 − 𝑐̅ > 0.                    (A.12) 

                    

Now, taking into account that  𝜏̅ = 2(1 − 𝜇)𝜉  and  𝜅 = 𝛿 + 𝜋′ = 𝑐0 − 𝜇, one can rewrite the equation (A.9) in 

the form              

                 (1 + 𝜉2)𝑦′′ + 2(1 − 𝜇)𝜉𝑦′ + (𝑐0 − 𝜇)𝑦 = 0.                            (A.13)       

 

Comparison now (A.13) with the second order differential equation (3.13) for the pseudo-Jacobi polynomials 

𝑃𝑛(𝜉;  𝜈, 𝑁) gives us the relations  
          

                 𝜈 = 0,  𝑁 = 𝜇 − 1,  𝑐0 − 𝜇 = 𝑛(2𝑁 + 1 − 𝑛),                            (A.14) 

 

                             𝑦 ≡ 𝑦𝑛(𝜉) = 𝑃𝑛(𝜉;  0, 𝜇 − 1).                                               (A.15) 
 

Since 𝑁 is an integer and takes positive values: 𝑁 = 1,2,3, …, then the parameter 𝜇 is quantized, i.e. 𝜇 = 𝑁 + 1 =
2, 3, 4, … Thus, for the model (4.22) 𝜇 takes the positive integer values starting from 2. It should be borne in mind 
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that the number 𝑛 is bounded from above: 𝑛 = 0, 1, 2, 3, … , 𝜇 − 1. It follows from the last equality in (A.14) that 

the parameter 𝑐0 is also quantized:  
 

              𝑐0 = 𝑏̅ + 𝑎 + 1 = 𝜇(2𝑛 + 1) − 𝑛(𝑛 + 1).                                (A.16) 
 

If we substitute in (A.16) the values (4.23) of the parameters a, b, c, then for the energy spectrum of the nonlinear 

oscillator (4.22) we obtain the formula 
 

          𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
)  +

1

2
|𝜆|ℏ2[𝑎 + 1 − 𝑛(𝑛 + 1)],    𝑛 ≤ 𝜇 − 1,            (A.17) 

 

where the renormalized oscillator frequency 𝜔 is equal to 
 

                 𝜔 = ℏ|𝜆|𝜇 = √𝑘 + ℏ2𝜆2[4𝛼𝛾̅̅̅̅ + (𝑎 + 1)2].                                (A.18) 
 

Formula (A.17) coincides with formula (83) in [10], however, in contrast to (83), the number of energy levels in 

(A.17) is finite and equal to 𝜇.    

Now, taking into account (A.5), (A.8) and (A.15) one obtains the following expression for the wave functions 

of the model (4.22) (𝜓 ≡ 𝜓𝜇𝑛) 

𝜓𝜇𝑛(𝑥) = 𝑁𝜇𝑛(1 + |𝜆|𝑥2)
𝑎+1

2
 – 

𝜇

2  𝑃𝑛 (√|𝜆|𝑥; 0, 𝜇 − 1).                      (A.19) 

 

We emphasize that in the case  λ < 0 the Hamiltonian of the equation (4.22) is Hermitian in the space 𝐿2(𝑅, 𝑑𝜌), 
where 𝑑𝜌 = (1 + |𝜆|𝑥2)−𝑎−1 𝑑𝑥. Therefore, the wave functions (A.19) are normalized by the condition 
 

       ∫ 𝜓𝜇𝑛
∗ (𝑥)𝜓𝜇𝑚(𝑥)(1 + |𝜆|𝑥2)−𝑎−1 𝑑𝑥 = 𝛿𝑛𝑚.

∞

−∞
                          (A.20) 

 

From here we find the normalization constants                     
 

                           𝑁𝜇𝑛 = 2𝜇−1−𝑛 Γ(𝜇−𝑛)

Γ(2𝜇−1−2𝑛)
√

√|𝜆|  Γ(2𝜇−𝑛)

𝜋 𝑛! (2𝜇−1−2𝑛)
 .                                 (A.21) 

 
 

Recall that in (A.21) we have 𝜇 − 𝑛 =1, 2, 3, 4, … In 

this connection, we note that the denominator of 

formula (86) in [10] for the normalization constant of 

the wave function includes the expression sin2[𝜋(𝜇 −
𝑛)], which is zero. Hence, in fact, formula (86) in [10] 

diverges. 

 

APPENDIX 3 

 

Using the transformation method, we construct 

exactly solvable potentials in the framework of the 

Schrödinger equation with constant mass, which are 

related to the pseudo-Jacobi polynomials (3.12). The 

transformation method using the properties of classical 

orthogonal polynomials has long been used in the 

literature to construct exactly solvable potentials that 

generate solutions for bound states of the Schrödinger 

equation with both constant and coordinate-dependent 

mass [13-20]. In its simplest form, when the mass is 

constant, this method is as follows. Solutions of the 

Schrödinger equation 
 

 

   [𝜕𝑥
2 +

2𝑚0

ℏ2 (𝐸 −  𝑉)]𝜓 = 0          (A.22)                                           
 

are associated with orthogonal polynomials 𝐹(𝑔(𝑥)) as 
 

               𝜓(𝑥) = 𝑓(𝑥) 𝐹(𝑔(𝑥)).         (A.23)                                                
 

In general, 𝐹(𝑔)  can be any special function satisfying 

the second order differential equation 
 

[𝜕𝑔
2 + 𝑄(𝑔)𝜕𝑔 + 𝑅(𝑔)]𝐹(𝑔) = 0 .    (A.24)                                       

      

As a result, we obtain the following relation between 

the coefficients of equations (A.22) and (A.24) (see for 

more details, for example, [13]) 

 

2𝑚0

ℏ2
(𝐸 −  𝑉(𝑥)) = 𝐴0 + (𝑔′)2 [𝑅(𝑔) −

1

2
𝜕𝑔𝑄(𝑔) −

1

4
𝑄2(𝑔)] , 

 

                      𝐴0 =
𝑔′′′

2𝑔′
−

3

4
(

𝑔′′

𝑔′
)

2

,   𝑓(𝑥) = (𝑔′)−1 2⁄ exp (
1

2
∫ 𝑄(𝑔)𝑔′𝑑𝑥).                    (A.25) 

 

For pseudo-Jacobi polynomials we have (see (3.13)) 
 

                                      𝑄(𝑔) =
2(𝜈−𝑁𝑔)

1+𝑔2  ,    𝑅(𝑔) =
𝑛(2𝑁+1−𝑛)

1+𝑔2  .                                      (A.26) 

 

Substitution of (A.26) in (A.25) leads to the expression 
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2𝑚0

ℏ2 (𝐸 −  𝑉(𝑥)) = 𝐴0 − 𝑎1 𝐴1 + 𝑎2 𝐴2 + 𝑎3 𝐴3,                            (A.27) 
 

where the coefficients 𝑎𝑖 and the quantities 𝐴𝑖 (𝑖 = 1, 2, 3)  are equal to 
 

                                     𝑎1 = 𝑛(𝑛 − 2𝑁 − 1) + 𝑁(𝑁 + 1),                                                (A.28) 
 

                         𝑎2 = 𝑁(𝑁 + 2) − 𝜈2,    𝑎3 = 2𝜈(𝑁 + 1),                                        (A.29) 
 

                           𝐴1 =
(𝑔′)

2

1+𝑔2
 ,   𝐴2 =

(𝑔′)
2

(1+𝑔2)2
 ,  𝐴3 =

(𝑔′)
2

 𝑔

(1+𝑔2)2
 .                                      (A.30) 

 

In order for equality (A.27) to hold for all values of 𝑥, 

one of the terms containing the function 𝑔(𝑥) or its 

derivative is assumed to be constant. This constant 

determines the value of the energy of the considered 

quantum system. This procedure is an integral part of 

this method. A constant term can therefore be generated 

on the right-hand side of eq. (A.27) by assuming 1) 

𝐴1 = 𝑎2, 2) 𝐴2 = 𝑎2 and 3) 𝐴3 = 𝑎2, where 𝑎2 > 0. 

We will consider only the first two cases. For the reason 

indicated in [13], the third case does not lead to a new 

potential. 

1) In the first case, for the function 𝑔(𝑥) the 

equation 𝐴1 = 𝑎2 gives the following value 𝑔(𝑥) =
sinh(𝑎𝑥 + 𝑏), were 𝑏 is a constant of integration. In 

this case, the energy 𝐸 ≡ 𝐸𝑛and potential 𝑉(𝑥) take the 

form

 
 

       𝐸𝑛 =
ℏ2𝑎2

2𝑚0
[𝑛(2𝑁 + 1 − 𝑛) − 𝑁(𝑁 + 1) − 1 4⁄ ],  𝑛 = 0, 1, 2, 3, … , 𝑁,                   (A.31) 

 

𝑉(𝑥) =
ℏ2𝑎2

2𝑚0
[(𝜈2 − 𝑁(𝑁 + 2) − 3 4⁄ )sech2(𝑎𝑥 + 𝑏) − 

 

−2𝜈(𝑁 + 1) sech(𝑎𝑥 + 𝑏) tanh(𝑎𝑥 + 𝑏)].                                (A.32) 

 

The wave functions corresponding to the energy levels (A.31) are 
 

               ψ𝑛 = 𝐶𝑛(1 + 𝑔2)−
𝑁

2
−

1

4 𝑒𝜈arctan(g)𝑃𝑛(𝑔; 𝜈, 𝑁).                                      (A.33) 
 

where 𝑔 = sinh(𝑎𝑥 + 𝑏).  They are normalized by the condition (expression for 𝑑𝑁𝑛(𝜈) given in (3.14)) 
 

                        ∫ 𝜓𝑛
∗∞

−∞
(𝑥)𝜓𝑚(𝑥)𝑑𝑥 = 𝛿𝑛𝑚,    𝐶𝑛 =

√𝑎

𝑑𝑁𝑛(𝜈)
 .                                (A.34) 

 

If in (A.31) and (A.32) we introduce new notaion 𝐴 = 𝑠𝑎 and 𝐵 = 𝜆𝑎, where 𝑠 = 𝑁 + 1 2⁄ , 𝜆 = −𝜈, and also put 

𝑏 = 0, 2𝑚0 = ℏ = 1, we get 
 

                                 𝐸𝑛 = −(𝐴 − 𝑛𝑎)2,   𝑛 = 0, 1, 2, 3, … , 𝑠 − 1 2⁄ ,                            (A.35) 
 

𝑉(𝑥) = (𝐵2 − 𝐴2 − 𝐴𝑎)sech2(𝑎𝑥) + 𝐵(2𝐴 + 𝑎) sech(𝑎𝑥) tanh(𝑎𝑥).           (A.36) 
 

These formulas were obtained in [13, 14, 18]. Here we 

will only note the following: 1) the parameter 𝑠  (hence 

the potential parameter 𝐴) takes discrete values equal 

to =
3

2
 ,

5

2
 ,

7

2
, … ; 2) the number of energy levels of the 

system is finite and equal to 𝑠 + 1 2⁄ .  

      2) In the second case, for the function 𝑔(𝑥) from 

the equation 𝐴2 = 𝑎2 we obtain 𝑔(𝑥) = tan(𝑎𝑥 + 𝑏). 

In this case, the constant term in (A.27) does not depend 

on the number n, i.e. 

                                     

                                 
2𝑚0

ℏ2
𝐸 = 𝑎2[𝑁(𝑁 + 2) − 𝜈2 + 1],                                          (A.37) 

 

                              
2𝑚0

ℏ2 𝑉(𝑥) = −𝑎2[𝑛(𝑛 − 2𝑁 − 1) + 𝑁(𝑁 + 1)] sec2(𝑎𝑥 + 𝑏) + 
 

                     +2𝑎2𝜈(𝑁 + 1) tan(𝑎𝑥 + 𝑏).                                                       (A.38) 
 

Introducing 𝑠 = 𝑁 + 1 − 𝑛 and  𝜆 = 𝜈(𝑠 + 𝑛) as new parameters we can transfer the 𝑛  dependence to the constant 

term 𝐸.  Then we obtain we obtain the well-known formulas [13, 14, 18]: 
 

                      𝐸𝑛 =
ℏ2

2𝑚0
[(𝐴 + 𝑛𝑎)2 −

𝐵2

(𝐴+𝑛𝑎)2],    𝑛 = 0, 1, 2, 3, … ,                      (A,39) 

 

                  𝑉(𝑥) =
ℏ2

2𝑚0
[𝐴(𝐴 − 𝑎) sec2(𝑎𝑥 + 𝑏) − 2𝐵tan(𝑎𝑥 + 𝑏)],                (A.40) 
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where 𝐴 = 𝑠𝑎 and 𝐵 = 𝜆𝑎2. 

       Let us now write out the wave functions corresponding to the energy levels (A.39). They look like 
 

                     ψ𝑛 = 𝐶𝑛(1 + 𝑔2)− 
𝑠+𝑛

2
   𝑒

𝜆

𝑠+𝑛
(𝑎𝑥+𝑏) 𝑃𝑛 (𝑔;

𝜆

𝑠+𝑛
, 𝑠 + 𝑛 − 1),                 (A.41)                                                   

 

where 𝑔 = tan(𝑎𝑥 + 𝑏) and −
𝜋

2
< 𝑎𝑥 + 𝑏 <

𝜋

2
 . Note 

that the condition 𝑛 ≤ 𝑁 or 𝑛 ≤ 𝑠 + 𝑛 − 1, which is 

valid for the pseudo-Jacobi polynomials (A.41), holds 

for all nonnegative integer values of the number 𝑛 =
0, 1, 2, 3, … ,if 𝑠 ≥ 1. Therefore, the wave functions 

(A.41) are square integrable for any nonnegative 

integer values of 𝑛. However, the question of proving 

the orthogonality ψ𝑛 and ψ𝑚 requires additional 

analysis (see formula (3.27) in [18]). 
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