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1. INTRODUCTION 

 

 For several decades now, various quantum 

mechanical systems with a position-dependent mass 

M(x) have been intensively studied by many authors 

[1-25]. The great interest of physicists in such systems 

is explained by the fact that these systems play an 

important role in many physical problems. For 

example, they are widely used in condensed matter 

physics, in materials science, in nuclear physics, etc. 
They have found particular application in the study of 

the electronic properties of semiconductors [6], in the 

theories of quantum dots, quantum wells [7], [24] and 

quantum liquids [25], in the nuclear many-body 

problem [11], etc. 

Exactly solvable problems occupy a special place 

among the problems of quantum mechanics. The 

Schrödinger wave equation completely describes the 

dynamical behavior of nonrelativistic microscopic 

systems. However, there are only a very limited 

number of potentials important for physical 
applications that allow exact analytical solutions of 

the Schrödinger equation. It is well known that the 

exact analytical solution of the Schrödinger equation 

for a given quantum system provides the maximum 

possible information about this system. On the other 

hand, finding exact solutions of the Schrödinger 

equation with position-dependent mass turns out to be 

very useful for understanding some physical 

phenomena and testing some approximation methods. 

In this regard, we note that a number of researches 

[26–44] are devoted to the construction of exactly 

solvable potentials for the Schrödinger equation with 
the position-dependent mass. 

In a recent paper [45], we constructed a new 

exactly solvable model of a linear quantum harmonic 

oscillator with a position-dependent mass whose 

interaction potential behaves like a semi-restricted 

quantum well with a non-rectangular profile. The 

frequency of the constructed oscillator model is 

chosen as a constant value. 

The purpose of this paper is to construct, on the 

basis of the model in [45], a new model of an 

oscillator with position-dependent mass 𝑀(𝑥) and  
 

 

frequency 𝜔(𝑥) so that the stiffness coefficient of the 

oscillator remains constant: 𝑘 = 𝑀(𝑥)𝜔2(𝑥) = const.       
We emphasize that the construction of models of 

quantum physical systems with the position-dependent 

mass starts with choosing the form of the free 

Hamiltonian 𝐻0 and the subsequent selection of the 

mass function 𝑀(𝑥). The point is that due to the non-

commutativity of the momentum operator 𝑝 = −𝑖ℏ𝜕𝑥 

and the mass function 𝑀(𝑥), the question arises of 

their ordering in the expression for the free non 

Hermitian Hamiltonian. 

We structured our paper as follows. Section 2 

presents a brief review of the exact solution of the 

usual nonrelativistic quantum harmonic oscillator with 

the constant mass 𝑚0 approach. Section 3 consists of a 

brief discussion of the property of the generalized 

Hamiltonian [33, 34]. Section 4 devoted to the 

construction of the exactly solvable model of the 
nonrelativistic harmonic oscillator model with a 

position-dependent effective mass and frequency, 

interaction potential of which behaves itself as a 

symmetric infinite parabolic quantum well. Section 4 

is devoted to building a model of a nonrelativistic 

harmonic oscillator with position-dependent mass and 

frequency, so that the interaction potential is a 

symmetric infinite parabolic quantum well. 

In final section 5, we discuss the limit cases, 

when the parameter a goes to infinity. As a 

consequence, the wave functions of the model under 

construction expressed by the Laguerre polynomials 
completely recover the wave functions of the non-

relativistic quantum harmonic oscillator with constant 

mass and frequency as well as energy spectrum of 

non-equidistant and finite form becomes equidistant 

and infinite. 

 

2.     NONRELATIVISTIC LINEAR HARMONIC  

        OSCILLATOR WITH CONSTANT MASS     

        AND FREQUENCY  

 

Let us write the one-dimensional Schrödinger 
equation describing the motion of a nonrelativistic 

quantum particle with constant mass 𝑚0 in the 

external field 𝑉(𝑥). It has the form 
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[
𝑝2

2𝑚0
+ 𝑉(𝑥)] 𝜓(𝑥) = 𝐸𝜓(𝑥),          (2.1)                                                    

 

where 𝑝 = −𝑖ℏ𝜕𝑥 is the momentum operator. A linear 

harmonic oscillator with frequency 𝜔0  corresponds to 
the following potential energy 

 

              𝑉HO(𝑥) =
𝑚0𝜔2𝑥2

2
,     −∞ < 𝑥 < ∞,     (2.2)  

               

Let us rewrite equation (2.1) with the potential (2.2) as 

 
𝑑2𝜓

𝑑𝑥2 +
2𝑚0

ℏ2
(𝐸 −

𝑚0𝜔2𝑥2

2
) 𝜓 = 0.        (2.3)                                         

 

The solution and energy spectrum of the equation 

(2.3) are well known [45] 

𝜓𝑛
HO(𝑥) = 𝑐𝑛

HO𝑒− 
1

2
𝜆0

2𝑥2
𝐻𝑛(𝜆0𝑥),      (2.4)                                   

 

             𝐸𝑛
HO = ℏ𝜔 (𝑛 +

1

2
) , 𝑛 = 0,1,2,3, …,    (2.5)                           

 

Where  𝐻𝑛(𝑥) are Hermite polynomials and 

𝜆0 = √𝑚0𝜔0 ℏ⁄  . Normalization constants are equal 

to 

            𝑐𝑛
HO = √

𝜆0

2𝑛𝑛!√𝜋
=

1

√2𝑛𝑛!
(

𝑚0𝜔0

𝜋ℏ
)

1 4⁄

.          (2.6)                                     

 

They are found from the orthogonality condition for 

the Hermite polynomials [46, 47]  
 

   ∫ 𝑒−𝑥2∞

−∞
𝐻𝑚(𝑥)𝐻𝑛(𝑥)𝑑𝑥 = √𝜋2𝑛𝑛! 𝛿𝑛𝑚.     (2.7)   

                               

 

3. ON THE GENERALIZED FREE 

HAMILTONIAN WITH THE POSITION-

DEPENDENT MASS 

 

We emphasize that the construction of models of 

quantum physical systems with the position-dependent 

mass starts with choosing the form of the free 

Hamiltonian 𝐻0 and the subsequent selection of the 

mass function 𝑀(𝑥). A long-standing problem with 

the position-dependent mass model is how to order the 

ambiguities that appear due to the non-commutativity 

of the momentum operators 𝑝 = −𝑖ℏ𝜕𝑥and the mass 

𝑀(𝑥) in the expression for the free Hamiltonian. In 
[33, 34], a Hamiltonian with a position-dependent 

mass was proposed, which can be represented as 

 

𝐻0 =
1

2
𝑝

1

𝑀(𝑥)
𝑝 + 𝑉free(𝑥),          (3.1)                                     

 

where 𝑉free(𝑥) is the contribution from the free 

Hamiltonian to the potential energy, which depends on 

the mass function 𝑀(𝑥) and on the 3𝑁 ordering 

parameters 𝛼𝑖 , 𝛾𝑖 (𝑖 = 1,2, … , 𝑁), 𝑁 = 1, 2, 3, … It has 
a form  

    𝑉free(𝑥) = 𝐴𝑓
ℏ2𝑀′2

2𝑀3 − 𝐵𝑓
ℏ2𝑀′′

4𝑀2  .        (3.2)                                             

 

Here 𝐴𝑓 = 𝛼 + 𝛾 + 𝛼𝛾, 𝐵𝑓 = 𝛼 + 𝛾 and 𝛼, 𝛾 are the 

mean values of the ordering parameters 

 

𝛼 =
1

𝑁
∑ 𝛼𝑖

𝑁
𝑖=1 , 𝛾 =

1

𝑁
∑ 𝛾𝑖 ,

𝑁
𝑖=1  𝛼𝛾 =

1

𝑁
∑ 𝛼𝑖𝛾𝑖 .

𝑁
𝑖=1    (3.3)                

 

We emphasize that the parameters 𝐴𝑓 and 𝐵𝑓 can take 

any real values. Hamiltonian (3.1) can be written as 

the arithmetic mean of the von Roos Hamiltonian, i.e. 

 

  𝐻0 =
1

𝑁
∑ 𝐻0𝑖

vR𝑁
𝑖=1 ,  

 𝐻0𝑖
vR =

1

4
(𝑀𝛼𝑖𝑝𝑀𝛽𝑖𝑝𝑀𝛾𝑖 + 𝑀𝛾𝑖 𝑝𝑀𝛽𝑖𝑝𝑀𝛼𝑖).   (3.4) 

 

The sum (3.4) contains all terms with equal weights 

(probabilities) 1 𝑁⁄ . If we assume that they enter the 

sum with different weights 𝜃𝑖 𝑁⁄ , then instead of (3.1) 

we obtain the following Hamiltonian 

 

 

𝐻0
𝜃 =

1

𝑁
∑ 𝜃𝑖𝐻0𝑖

vR𝑁
𝑖=1 =

1

2
𝑝

1

𝑀(𝑥)
𝑝 + Vfree

𝜃 (𝑥),                 (3.5) 

where 

1

𝑁
∑ 𝜃𝑖 = 1,𝑁

𝑖=1   Vfree
𝜃 (𝑥) = 𝐴𝑓

𝜃 ℏ2𝑀′2

2𝑀3 − 𝐵𝑓
𝜃 ℏ2𝑀′′

4𝑀2  .     (3.6) 

 

For the coefficients  𝐴𝑓
𝜃 and  𝐵𝑓

𝜃we have the expressions  

 

                          𝐴𝑓
𝜃 =

1

𝑁
∑ 𝜃𝑖(𝛼𝑖 + 𝛾𝑖 + 𝛼𝑖𝛾𝑖)

𝑁
𝑖=1 ,  𝐵𝑓

𝜃 =
1

𝑁
∑ 𝜃𝑖(𝛼𝑖 + 𝛾𝑖)

𝑁
𝑖=1 .                             (3.7) 

 

A different choice of the values of the parameters 𝐴𝑓
𝜃 

and 𝐵𝑓
𝜃 generates different Hamiltonians. On the other 

hand, different choices of the values of the parameters 

𝑁, 𝜃𝑖 , 𝛼𝑖 , 𝛾𝑖 (𝑖 = 1,2, … , 𝑁) can correspond to the 

same values of the parameters 𝐴𝑓
𝜃 and 𝐵𝑓

𝜃. Then all 

these Hamiltonians will be physically equivalent to 

each other. Thus, the form of the Hamiltonian with a 

position-dependent mass is determined by only two 

parameters 𝐴𝑓
𝜃 and 𝐵𝑓

𝜃, i.e. it turns out that the 

Hamiltonians (3.1) and (3.5) are physically equivalent 

and differ from each other only by renaming. 

 As an example, we list various orderings that 

can be found in the literature and give the value of the 

coefficients for them 𝐴𝑓
𝜃 and 𝐵𝑓

𝜃. 

 

1. Ben-Daniel–Duke ordering [1]: 𝛼 =  𝛾 =  0, 𝛽 =  −1, 𝐴𝑓 = 𝐵𝑓 = 0; 

2. Gore–Williams ordering [3]: 𝛼 =  −1, 𝛽 =  𝛾 =  0,  𝐴𝑓 = 𝐵𝑓 = −1; 
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3. Zu-Kremer ordering [4]: 𝛼 =  𝛾 = − 1 2⁄  , 𝛽 =  0, 𝐴𝑓 = − 3 4⁄ , 𝐵𝑓 = −1; 

4. Li-Kun ordering [5]: α =0, 𝛽 = 𝛾 = − 1 2⁄  0,  𝐴𝑓 = 𝐵𝑓 = − 1 2⁄ ; 

5. Mustafa–Mazharimusavi ordering [15]: 𝛼 =  𝛾 = −1/4, 𝛽 = −1/2. 𝐴𝑓 = − 7 16⁄ , 𝐵𝑓 = − 1 2⁄  . 

 

4. A MODEL OF LINEAR HARMONIC 

OSCILLATOR WITH THE POSITION-

DEPENDENT MASS AND FREQUENCY: 

PARABOLIC WELL  

 

In a recent paper [34], we constructed an exactly 

solvable model of a nonrelativistic linear quantum 

harmonic oscillator with a position-dependent mass. 

The dependence of the mass on the position is chosen 

in the form 

          𝑀(𝑥) =
𝑎2𝑚0

𝑎2+𝑥2,    𝑥 + 𝑎 > 0,    𝑎 > 0.  (4.1)                                               

 

The potential energy of the oscillator in [34] has the 

form 

VHO(𝑥) = {
𝑀(𝑥)𝜔0

2𝑥2

2
,

∞,

x + a > 0,
x + a ≤ 0

       (4.2)                                

 

and behaves like a semi-infinite quantum well. The 

oscillator frequency is constant, i.e. 𝜔0 = const. This 

model is described by the free Hamiltonian Ben 

Daniel-Duke 

𝐻0
BD = −ℏ2 ∂x

1

2𝑀(𝑥)
∂x.           (4.3)                                                        

 

The wave functions of the discrete spectrum in this 

case are expressed in terms of the Bessel 

polynomials𝑦𝑛(𝑥; 𝛼): 

 

𝑛
𝑄𝑊(𝑥) = const (1 +

𝑥

𝛼
)

−𝜆0
2𝑎2

𝑒−
𝜆0

2𝑎2

𝑎+𝑥 𝑦𝑛 (
𝑥+𝑎

𝜆0
2𝑎3 ; −2𝜆0

2𝑎2).                        (4.4) 

 

Discrete energy spectrum is not equidistant 

 

𝐸𝑛
𝑄𝑊 = ℏ𝜔0 (𝑛 +

1

2
) −

ℏ2

2𝑚0𝑎2 𝑛(𝑛 + 1), 𝑛 = 0,1,2, … , 𝑁.              (4.5) 

 

 

Since the quantum well (3.2) has a finite depth, the 

number of energy levels of the discrete spectrum is 

finite. 

The purpose of this section is to construct a new 
model of a linear harmonic oscillator with a mass 

function of the form (4.1) and with the following 

interaction potential 

V(𝑥) = {
𝑚0𝜔0

2𝑥2

2
+ 𝑔𝑥,    

∞,

x + a > 0,
x + a ≤ 0.

      (4.6)                                              

 

Thus, we assume that the frequency 𝜔(𝑥) of the 

considered model also depends in a certain way on the 

position 

𝜔(𝑥) = 𝜔0 (1 +
𝑥

𝑎
) .             (4.7)                                                   

 

Potential (4.6) corresponds to an asymmetric infinite 

semi-parabolic well (Fig. 3). 

      To describe the oscillator model under 

consideration, we will use the generalized 

Hamiltonian (3.1). In the case of the mass function 

(4.1), the free potential 𝑉𝑓𝑟𝑒𝑒 (𝑥)) becomes constant, 

i.e. 

𝑉𝑓𝑟𝑒𝑒(𝑥) =
ℏ2

2𝑎2𝑚0
(4𝐴𝑓 − 3𝐵𝑓) ≡ 𝑉0 = const.   (4.8)                         

 

For our oscillator model, the Schrödinger equation 

reads: 
 

𝜓′′ +
2

𝑎+𝑥
𝜓′ +

2𝑎2𝑚0

ℏ2(𝑎+𝑥)2
(𝜀 −

𝑚0𝜔0
2𝑥2

2
− 𝑔𝑥) 𝜓 = 0,     (4.9)                       

 

Where 𝜀 = 𝐸 − 𝑉0. By introducing a new variable 

 𝜉 = 𝑥 𝑎⁄  (−1 < 𝜉 < ∞) we rewrite equation (4.9) in 
the following form 

 

𝑎2𝜓′′ + 𝑎1𝜓′ + 𝑎0𝜓 = 0.              (4.10) 

 

Here we introduced the notation 

 

𝑎2 = 1,  𝑎1 =
2

𝑎+𝑥
, 𝑎0 =

𝑐0−𝑐1𝜉− 𝑐2𝜉2

(1+𝜉)2 .   (4.11)                       

 

For the coefficients 𝑐0,  𝑐1 and 𝑐2 we have the 

following expressions 

 

𝑐0 =
2𝑎2𝑚0𝜀

ℏ2
, 𝑐2 =

𝑚0𝜔0
2𝑎4

ℏ2
= 𝜆0

4𝑎4 ,   𝑐1 =
2𝑚0𝑎3𝑔

ℏ2
 .  (4.12)          

 

The solution of equation (4.10) will be sought in the 

form 

                           

  𝜓 = 𝜑(𝜉)𝑦(𝜉),   𝜑(𝜉) = (1 + 𝜉)𝐴𝑒−𝐵(1+𝜉).  (4.13)         

 

The function 𝜑(𝜉)must be finite for all finite values of 

𝜉(−1 < 𝜉 < ∞). It follows from this requirement that 

there must be A ≥ 0, 𝐵 > 0. 
 If we substitute (4.13) into equation (4.10), then 

we obtain for the function 𝑦(𝜉) an equation of the 

form 

𝑏2𝑦′′ + 𝑏1𝑦′ + 𝑏0𝑦 = 0,          (4.14)                                       

where  

 

𝑏2 = 𝑎2, 𝑏1 =  𝑎1 + 2𝑎2
𝜑′

𝜑
, 𝑏0 = 𝑎0 +  𝑎1

𝜑′

𝜑
+ 𝑎2

𝜑′′

𝜑
.                    (4.15) 



MODEL OF A LINEAR HARMONIC OSCILLATOR WITH A POSITION-DEPENDENT MASS IN THE EXTERNAL … 

39 

 

After simple calculations, from here we find 

 

𝑏2 = 1, 𝑏1 =
2(1+𝐴−𝐵−𝐵𝜉)

1+𝜉
, 𝑏0 =

𝜎

(1+𝜉)2.                       (4.16) 

 

Here 𝜎 is a square nominal 𝜎 = 𝛼2𝜉2 + 𝛼1𝜉 + 𝛼0 with coefficients 
 

𝛼2 = 𝐵2 − 𝑐2, 𝛼1 = −𝑐1 − 2𝐵 − 2𝐴𝐵 + 2𝐵2 𝛼0 = 𝑐0 + 𝐴 − 2𝐵 + (𝐴 − 𝐵)2.            (4.17) 
 

We find the unknown parameters 𝐴 and 𝐵 in (4.13) 

from the condition that the square trinomial 𝜎 is 

divisible by 1 + 𝜉, т.е. 𝜎 = 𝜇(1 + 𝜉). This condition 

gives 

𝛼2 = 0,  𝛼1 =  𝛼0 = 𝜇.          (4.18)                                       

 

From equations (4.18) we find the unknown 

parameters 𝐴, 𝐵 and 𝜇. They are equal 

 

𝐴 = −
1

2
+ √

1

4
+ 𝐵2 − 𝑐0 − 𝑐1  ,  𝐵 = 𝜆0

2𝑎2, 

                        

  𝜇 = 2𝐵2 − 2𝐵 − 2𝐴𝐵 − 𝑐1.             (4.19) 
                                                 

 

 

If we now take into account the conditions 𝐴 ≥ 0, then 

we get that the coefficient 𝑐0is bounded from above, 
i.e.  

𝑐0 ≤ 𝜆0
4𝑎4 − 𝑐1.               (4.20) 

 
This results in an upper bound on the energy value: 

 

𝜀 ≤
𝑚0𝜔0

2𝑎2

2
− 𝑎𝑔 .                 (4.21)                                                       

 

Thus, despite the fact that the potential well of our 

oscillator model (4.6) has an infinite depth, the 

number of energy levels of the discrete spectrum will 

be finite. 

Taking into account (4.19), we rewrite equation (4.14) in the form 

 

 
(1 + 𝜉)𝑦′′ + (2 + 2𝐴 − 2𝐵 − 2𝐵𝜉)𝑦′ + 𝜇 𝑦 = 0.                                                  (4.22) 

 

By substituting 𝑧 = 2𝐵(1 + 𝜉) this equation is reduced to the equation for the degenerate hypergeometric 
function [45] 

                   𝑧𝑢′′ + (𝛾 − 𝑧)𝑢′ − 𝛼𝑢 = 0 ,  𝑢 = 𝐹1(𝛼; 𝛾, 𝑧)1 ,                                     (4.23) 

where    

     𝛾 = 2(1 + 𝐴), 𝛼 = 𝐴 + 1 − 𝐵 +
𝑐1

2𝐵
 .                       (4.24) 

The general solution of equation (4.22) has the form 

                     

  𝑦 = 𝐶1 𝐹1(𝛼; 𝛾, 𝑧) + 𝐶2𝑧1−𝛾 𝐹1(𝛼 − 𝛾 + 1; 2 − 𝛾, 𝑧)11 .                             (4.25) 
 

Since 1 −  𝛾 = −1 − 𝐴 < 0, then the second term in (4.25) diverges at the point 𝜉 = −1. It follows that 𝐶2 = 0. 

Then for the function (4.25) we will have the expression 

 

𝑦 = 𝐶1 𝐹1 (𝐴 + 1 − 𝐵 +
𝑐1

2𝐵
; 2 + 2𝐴; 2𝐵(1 + 𝜉)) .1                                (4.26) 

 

The function 𝑦(𝜉) (4.26) must be finite for all finite 𝜉, 

and for 𝜉 = ∞ it can go to infinity no faster than a 

finite power of 𝜉 (so that the function 𝜓 (4.13) goes to 

zero). This implies that the function 𝑦 (4.26) can only 

be a polynomial in 𝜉. For this, the condition will have 

to be fulfilled (the condition for energy quantization) 
 

𝐴 + 1 − 𝐵 +
𝐶1

2𝐵
= −𝑛, 𝑛 = 0,1,2, …             (4.27) 

     

Substituting (4.27) into (4.26) and taking into 
account the definition of Laguerre polynomials 

[46,47] 

 

𝐿𝑛
𝛼 (𝑥) =

(𝛼+1)𝑛

𝑛!
𝐹1 1(−𝑛; 𝛼 + 1; 𝑥),        (4.28) 

 

we conclude that the function 𝑦(𝜉) is expressed in 

terms of the Laguerre polynomials 

 

𝑦(𝜉) = 𝐿𝑛
2𝐴𝑛+1(2𝐵(1 + 𝜉)).            (4.29) 

 

Then the complete wave function (4.13) will have the 

form 

 

𝜓𝑛(𝜉) = 𝐶𝑛(1 + 𝜉)𝐴𝑛𝑒−𝐵(1+𝜉)𝐿𝑛
2𝐴𝑛+1(2𝐵(1 + 𝜉)),                      (4.30a) 

 

or  
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      𝜓𝑛(𝑥) = 𝐶𝑛(𝑎 + 𝑥)
𝜆0

2𝑎2−𝑛−1−
𝑎𝑔

ℏ𝜔0  𝑒−𝜆0
2𝑎(𝑎+𝑥)𝐿𝑛

2𝜆0
2𝑎2−1−2𝑛 −

2𝑎𝑔

ℏ𝜔0(2𝜆0
2𝑎(𝑎 + 𝑥)).         (4.30b) 

 

Corresponding to the wave functions (4.30), the energy spectrum is discrete  

                               𝐸𝑛 = ℏΩ0 (𝑛 +
1

2
) −

ℏ2

2𝑚0𝑎2 𝑛(𝑛 + 1) −
𝑚0𝜔0

2𝑥0
2

2
+ 𝑉0,                                           (4.31) 

where  Ω0 = 𝜔0 (1 −
𝑥0

𝑎
) is a renormalized frequency 

o f  the  osc i l la to r  mode l  unde r  cons ide ra t ion  and  

 𝑥0 = 𝑔 (𝑚0𝜔0
2⁄ .  As follows from here that the 

number of energy levels 𝑁𝑔 is finite and depends on 

both the value and sign of the force, i.e.  

 

 𝑛 = 0,1,2, … , 𝑁𝑔 , 𝑁𝑔 = 𝜆0
2𝑎2 − 1 −

𝑚0𝜔0𝑎𝑥0

ℏ
 . (4.32)                  

Depending on the sign of the force 𝑔 (or 𝑥0), the 

frequency of the oscillator or can increase or decrease. 

For 𝑔 > 0, with an increase in the force modulus, the 

number of levels increases, and for 𝑔 < 0 , on the 
contrary, it decreases. In the second case, even at a 

certain force value equal to 𝑔 = 𝑚0𝜔0
2𝑎 − ℏ𝜔0/𝑎, the 

spectrum disappears altogether.    

In this paper, we have constructed an exactly 

solvable model of a linear quantum harmonic 

oscillator with a position-dependent mass. The model 

under consideration has only discrete energy 

spectrum, and despite the fact that the potential 

parabolic well has an infinite depth, the number of 

levels is finite. This can be explained by the influence 

of the mass function 𝑀(𝑥) on the potential. In other 
words, it is possible that the considered model with a 

position-dependent mass and with an infinite well is 

equivalent to a system with a constant mass and a well 

of finite depth. 

____________________________ 
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