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It is shown that when choosing the crystal symmetry, if the wave vector of the wave and the temperature gradient are 

oriented arbitrarily, waves of a thermomagnetic nature of the same frequency and growth rate are possibly excited. 
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INTRODUCTION 
 

It was shown in [1] that hydrodynamic motions 
in a nonequilibrium plasma, in which there is a 
constant temperature gradient ( T const∇ = ), has 
oscillatory properties. This property of plasma is very 
different from ordinary plasma. Without an external 
magnetic field and hydrodynamic motions, transverse 
“thermomagnetic” waves are possible in it, in which 
only the magnetic field oscillates. In the presence of 
an external magnetic field, the wave vector of 
thermomagnetic waves is perpendicular to the 
magnetic field and lies in the plane (Н , T∇

 
). If a 

weak magnetic field appears in such a plasma, i.e. 
1Ωτ <<  (Ω -Larmar frequency of electrons, τ -time 

of collision of electrons) inside the plasma arises in 
addition to the external electric field, the electric is 
proportional to the temperature gradient, the electric 

field is proportional to the magnetic field. Due to this 
complex electric field, thermomagnetic waves of a 
transverse k T⊥ ∇

 
 ( k


-wave vector) and longitudinal 
character Tk ∇


||  are excited. A theoretical study of 

these thermomagnetic waves in isotropic conducting 
media of the electric type of charge carriers was 
carried out in [2-5]. However, in anisotropic 
conducting media, there is no theoretical study of 
thermomagnetic waves. In this theoretical work, we 
will investigate thermomagnetic waves in anisotropic 
conducting media with selected samples. 

 
BASIC EQUATIONS OF THE PROBLEM 
 

In the presence of an external magnetic field and 
a temperature gradient in an isotropic solid, the total 
electric field has the form 
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j


- current flux density 
In anisotropic conducting media, all coefficients in equation (1) are tensors.  
Then the equations for anisotropic conducting media will have the form: 
 

[ ] ( ) [ ] [ ]( ) kikkik
k
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x
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Here ikζ  is the tensor of the reciprocal of the ohmic resistance, ikΛ is the differential thermoelectric 
power, and ikΛ′  is the Nernst-Ettinishausen coefficient. We will consider a solid external magnetic field 00 =H

 . 
Then, in the equations, the terms containing are equal to zero. Taking into account Maxwell's equation, we 
obtain the following system of equations  
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Assuming that all variable quantities are monochromatic in nature, i.e. 

 

( ) ( )trkiejHE ϖ−′′
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~,,                                                                             (4) 
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From (3) it turns out: 
[ ]kikikiki HTjE


∇Λ′+′=′ ζ                                                                   (5) 

 

[ ][ ] kkk EiEkkicj ′+′=′
π
ϖ

πϖ 44

2 
 

(ϖ -oscillation frequency). 
 
THEORY 
 

We (5) it turns out:   
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To obtain the dispersion equation from (6), you first need to choose a coordinate system. We will choose 

the following coordinate system 
 

1k 0≠ , 2 3k k 0= = , 
2

T 0
x
∂

≠
∂

, 
3

T 0
x
∂

=
∂

                                                      (7) 

Taking into account (7), from (6) it turns out: 

k
k

e
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When obtaining (8) from (7), we assumed that k T⊥ ∇
 

 i.e. the resulting thermomagnetic waves are 
transverse. 

At i ik kE Eδ′ ′= , ik
1,i k
0,i k

δ
=

=  ≠
                                                               (9) 

From (8) we obtain the following dispersion equations in tensor form 
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Expanding by components (10) it turns out: 
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Here: 
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( ) ,
4

4 23232
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32 πϖ
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= 33
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ϖ kiciN −

=  

Putting (12) into (11), we obtain the following equation for the oscillation frequency inside an anisotropic 
body 

01
2

2
3

3
4

4
5

5 =Ψ+Ψ+Ψ+Ψ+Ψ+Ψ ϖϖϖϖϖ                                        (13) 
 

Solution (13) in a general form is not possible and therefore we will not write out the expression
54321 ,,,,, ΨΨΨΨΨΨ .  

To solve the dispersion equation (11), we will choose crystals satisfying the following conditions. 
 

1)                       11 21 31N N N= = , 2) 21 32 22N N N= =  3) 13 23 33N N N= =                                     (14) 
 

A crystal satisfying conditions (14) is diagonal.  
Taking into account (14), from (11) we easily obtain 

 
11 22 33N N N 1+ + =                                                                (15) 

If  
ζζζζ === 332211                                                                 (16) 

from (15) we get 
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It can be seen from (18) that at
ζ
ϖπ 2122 6 ′

>kc , the exciting wave is of a purely electromagnetic nature.  

When 21
22 6 ϖπζ ′<kc   the excited wave is growing thermomagnetic with a frequency 
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For Tk ∇


|| from (11), consider the case 
 

1) 11 21 31N N N= = ,        2) 13 32 33 23 13N N N N N= = = =                                         (19) 
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Taking into account (19-20) from (11) we get: 

11 11 22N 1 2N N 0− + =                                                            (21) 
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From solution (22) we obtain 
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From (23) it can be seen that a wave with a frequency  
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For an arbitrary orientation of the wave vector relative to the temperature gradient, from tensor (10), we 
obtain 
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Choosing a crystal 
From (11), taking into account (24), we obtain the following dispersion equation for determining the 

frequency and growth rate of the excited waves inside an anisotropic crystal 
 

 











−

−+−

=









+

Ω
−−−−

1
44

1
44

1111
2

2222
22

22
2

121112
22

12
2

1111
2

πϖ
ϖζϖ

πϖ
ϖζζϖ

π
ϖϖζζϖ

πϖ
ϖζϖ

ikici

kicii

                           (25) 

 
At  221112 ϖϖϖ += and  221112 ζζζ += from (25) we get   
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Solution (26) gives 
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or γi+Ω=Ω 0  
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For any orientation of the wave vector with 

respect to the temperature gradient, the frequency and 
growth rate of the excited thermomagnetic are the 
same. 

 

DISCUSSION OF THE RESULTS 
 

In anisotropic conducting media of the electric 
type of charge carriers in an external electric field in 
the presence of a constant temperature gradient, 
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longitudinal Tk ∇


||  and transverse k T⊥ ∇
 

 waves of 
a thermomagnetic nature are excited. The frequency 
and growth rate of this wave depend on the 
conductivity of the medium. The conductivity of a 
medium is easily expressed in terms of the diagonal 
values of the conductivity. This creates a favorable 
condition for experimental verification of the exciting 
waves. If the wave vector of the excited waves has an 
arbitrary direction relative to a constant temperature 
gradient, then the frequency and growth rate have the 
same values. When calculating, we choose crystals of 
different symmetry. Of course, the conditions for the 

excitation and growth of the wave will be different if 
we choose different symmetries from the tensor (11). 

 
CONCLUSION 

 
It is proved that in anisotropic conducting media 

of electric type of charge carriers, different waves of a 
thermomagnetic nature are excited. With the 
longitudinal Tk ∇


||  and transverse k T⊥ ∇

 
 

orientation of the wave vector relative to the 
temperature gradient, waves of a thermomagnetic 
nature with different frequencies and increments are 
excited. 
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