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THE WIGNER DISTRIBUTION FUNCTION OF A SEMICONFINED HARMONIC
OSCILLATOR MODEL WITH A POSITION-DEPENDENT MASS AND
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The phase space representation for a semiconfined harmonic oscillator model with the position-dependent mass and
frequency in an external homogeneous field is constructed in terms of the Wigner distribution function. It is expressed
through the Bessel function and Laguerre polynomials. Some of the special cases and limits are also discussed.
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1. INTRODUCTION

As is known, one of the formulations of quantum
mechanics is its formulation in the phase space [1-5].
This formulation uses concepts that are common to
both quantum and classical mechanics. It makes it
possible to describe the picture of quantum
phenomena using, as far as possible, the classical
language. This formulation deals only with c-
numerical quantities and equations, and not with
operators, which  sometimes  simplifies  the
mathematical description of a given quantum system.
The main tools of the phase formulation of quantum
mechanics are quantum distribution functions. To pass

to this formulation from the Schrddinger operator|

W (x, D, t) = ﬁf lp*(x — XE’ t)l/)(x + XE” t)e—ipx’/h dx.

At present there exist a lot of papers with

computation of the Wigner function of the various
constant [7-10] and position-dependent mass [11-17]
quantum relativistic and nonrelativistic harmonic
oscillator models.
On the other hand, it is also well known that the
construction and study of models of dynamic quantum
physical systems with coordinate-dependent mass has
long attracted the attention of scientists [18-37]. Such
guantum systems play an important role in studying
the physical and electronic  properties  of
semiconductors [22], quantum wells and quantum dots
[23], clusters *He [24], quantum liquids [25], graded
alloys, semiconductor heterostructures [26], etc.

formalism, it is necessary to replace the operators of
physical quantities with their Weyl transformations
[6], and the wave functions with quantum distribution
functions.

Among the various quantum distributions
functions that exist, the Wigner quantum distribution
function is well known. Wigner function W depends
on momentum p and coordinates x particles and in the
general case on time t, those W = W(p,x,t).
Introduced in 1932, the Wigner function is widely
used to describe various physical quantum systems.
The Wigner quantum distribution function is
expressed in terms of the Schrdédinger wave function
Y(x, t) using the formula:

(1.1)

(i + %(Z)xz + gx) l/)HO(X) — EHOIIJHO(X),

Zmo

The aim of this work is to construct the Wigner
quantum distribution function for a linear oscillator
model with a position-dependent mass and frequency
in an external homogeneous field [38].

2. WIGNER QUANTUM DISTRIBUTION
FUNCTION FOR A LINEAR HARMONIC
OSCILLATOR WITH CONSTANT MASS IN A
UNIFORM EXTERNAL FIELD

Let us write the Schrédinger equation describing

the motion of a linear harmonic oscillator with a
constant mass in a uniform external field

(2.1)

where p = —ihd, is the momentum operator, my and w, are constant mass and frequency of the oscillator,
equation (2.1) is defined on the entire real axis—oo < x < .
It is well known that the exact solution of Eq. (2.1) is expressed in terms of the Hermite polynomials

1
PYHO(x) = cHOe 26+’ (£ 4 £,),n = 0,1,2,3 ...

(22)

and the discrete energy spectrum corresponding to the wave functions is equidistant
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mowsx?

EHO = havo (n+) + , n=0123.. 2.3)

Here we use the following notation

g myw
§ = Aox, 8o = AoXg, Xp = m'lo = ’% (2.4)

From the orthonormalization condition for wave functions (2.2)

JZ 0 ) YHO () dx = Sy (2.5)

we find the normalization constant as follows

cHO _ 425 1
n m V20!’

(2.6)

Substituting (2.2) into (1.1) leads to the following expression for the Wigner function for a linear harmonic
oscillator in an external uniform field

-n" _ -
WO (p, x) = E1 e~ G0 7L, (217 + 2(€ + §)2), 2.7)
where L, (x) are Laguerre polynomials, and n = p/A,h. Formula (2.7) can also be written in operator form [11].
HO 1 _t L —(§+§0)?-n?
WO, x) = = ——H, (§ + & — 20, ) Hn (§ + & +50,) e @+, (2.8)

2. THE LINEAR HARMONIC OSCILLATOR WITH POSITION DEPENDENT MASS AND
FREQUENCY IN THE EXTERNAL HOMOGENEOUS FIELD WITH A LIMITED PARABOLIC
WELL

Linear harmonic oscillator model with a position dependent mass M(x) =

)2 and frequency w =
Wy (1 + ;), (a+ x> 0) in an external uniform field V,,.(x) = g(x), conS|dered in [38] is described by the

Schrédinger equation

[Ho + Veff(x)]l/)(x) = EY(x), a+x>0. (3.1

Here H, is the free Hamiltonian with a position dependent mass

Hy = pM(x) p+ Vfree(x) (3.2)

and Ve (x) is the contribution from the free Hamiltonian to the potential energy, which depends on the mass
function M (x) and on the real parameters Ay, By € R(—o, o0)(see [38,39,40]). It has a form

n2m’ nZm'’

Viree(x) = Ap ——o=— Br —— (3.3)

The effective potential is equal to the sum of the interaction potential V(x) and free potential, i.e.
Veff(x) =V(x)+ Veree (). (3.4)
Interaction potential V (x) we choose in the form

M(x)w?x?
V(x) = {—2 +gx, x+a>0, (3.5)
0, x+a<o,

where g is a force and M (x)w?(x) = myw3.
2
In this case, when M(x) = == we have V.. (x) = V, = const. The solution of the equation (3.1) with

(a+x)?
the potential (3.4)
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PIo) =cf (1+ )A et (147) 2401 (2b2 (1+§)),n=0,1,2,...1vg, (3.6)

is expressed in terms of the Laguerre polynomials [38]

L) =0 R (-na + L), (3.7)

in the following way, where b = ya, A, = b*> —n —1—b&,, Ny = b*> — 1 — b§,. The corresponding to the

wave functions (3.7) discrete energy spectrum has the form
hZ

2mga?

m0000"0

EY = hQ, (n + %) - n(n+1) - +V,, (3.8)

where Qy = w, ( f") is a renormalized oscillator frequency.
Let us now find the normalization constant c? in (3.7) from the condition

SEE o) dx = 1. (3.9)

To calculate this integral (3.9), we use the formula [41]

fooo x% e~ XY (cx)LA(cx)dx = Y3Vt Dn 0oy JFo(—mya,a — Ly +1,a—A—n;1), (3.10)

mlinlc®

Rea >0, Rec > 0.Inourcasewehavea =y =1 =24, +1, m=n,c = 1. Asaresult, we find

1
Apts
9 = (b7 [Aun@AtD
G = (2b7) br(2An+n+1) (3.11)
4. COMPUTATION OF THE WIGNER DISTRIBUTION FUNCTION OF A SEMICONFINED

LINEAR HARMONIC OSCILLATOR MODEL WITH POSITION-DEPENDENT MASS AND
FREQUENCY IN AN EXTERNAL HOMOGENEOUS FIELD

Y2

For our calculations, we will substitute expression (3.7) for the wave function into the definition of the
2
|Cg| b2(1+%
W (p,x) = =il 72 (“a)f
W () =—2

Wigner distribution function
X2 yzAn 24,41 x—=Yy
[(1 +=) - —Zl L2 <2b2 (1+ )) X
" a a a

20
x LZA"+1 (sz (1 + x+y)> o :ydy. @)

Integration limits in (4.1) y; and y, we find from the condition that the argument of the wave function
varies in the region x > —a, therefore, we have x —y > —a and x +y > —a. Hence it follows that y, =
—(x + a),y, = (x + a). Since the boundaries of integration in (4.1) are finite, this integral converges.

We introduce a dimensionless variable t = y/(x + a) and imagine W, (p, x) as

an(p' x) =0y I, 4.2)
|C‘g|2 1 n! (24, + 1)
e P 24, 2Ap+1 — e P[2 2An+1 , :
On = € b ) = e (12b+ 3] T(2A, + 1 +2)

1
- f (1= ) L (o = pOL ™ (p + p)e 210+,
-1
where p = 2b(b + &), = p/Aoh. Using equality

L5 -2+t

t —2i7](b+f)t -
€ 200+ &)
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rewrite I,, in operator form
245+1 , 24,+1 , 1 o

Ly = L™ (p — ibdy )Ly ™ (p + ibdy) [~ (1 — t2)n =2+ 0tgt (43)

Here integration can be carried out using the formulas [41]
a,. o 2\8-1,ilx 2a\F~1/2
J_ (a® = x*)P~1e™dx = AT (B) (7) Jp-1/2(ad),Ref >0,  (4.4)

where Jz(x) is the Bessel function. As a result, we obtain the following operator relation
I, = Val(4, + DL (p — ibd, )L (p + ib0, ) [n(b + O 42, 11 n(2n(b +8)). (45)

Taking into account (4.5), we can now write the Wigner function in operator form, i.e.

C-g 2
W (p,x) = hl \/”El/l ['(An + Db~ ne=P L2 (p — ibd, )L (p + ibd,)) X
0
b Ap+1/2
X (%f) ]An+1/2(277(b + sc))- (4.6)

4.1. GROUND STATE WIGNER FUNCTION
From (3.16) we extract the Wigner function of the ground state, which has the form

Ag+1/2

1 ['(24¢+1) (4b%(b+&) _
W (00) = 7= QA0+ D (2) T e Pagae(200 +0). (@)

Now taking into account the following well-known relation for the Gamma functions [43]

r'(2z) = %r(z)r (z+3), 4.38)

we can simplify expression (4.7). As a result we obtain the following analytical expression for the ground state
Wigner distribution function

Ag+1/2

2 1 b%(b+£) _
Wog(P; x) = Er(2A0+1/2)( ” ) e PJa,+1/2 (ZTI(b + f)) (4.9)
or explicitly ;
g _2 1 _p2obg, (DR TPT/2
Wy (p,x) = AT E—bee—1/D) ¢ b™=bso (T) ]bz—b§0—1/2(277(b + f)), (4.10)

where A,, = Ay — n, Ay=b% — b&§, — 1.
For the case of the absence of the external field g = 0 and &, = 0, and the Wigner function of the ground state
(4.8) slightly simplifies as follows:

b?-1

/2
0 _ z 1 —bz—bf bz(b‘l-f)
We(p,2) = et e 00 (B2 e, (200 + 9)). (4.11)

Taking into account that the Wigner function of the ground state (4.2) is exactly computed in terms of the
Bessel functions, then one can try to compute its analytical expression for arbitrarily excited states n. For this,

one needs to go to the expression (4.2). Its integrand mainly consists of the product of two Lagerre polynomials
with different arguments. One applies there the following known finite sum for such kind of products [42]

_ T(atn+1) Gk (av2k)
LaCILG (V) = = Xk=0griasren Lok X + ). (4.12)

Its substitution at (4.2) yields
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F'(2Ap+n+2) 2k 24, 2 .
I = n!n k= Ok'I‘(ZZ +n+2) Ez k+n+ )(2 )f (1 — ¢2)Antk g=2m0+DtGr  (4.13)

Applying again the integral formula (4.4), for I,, we get

I, = T A D [ 4 ) A2 B0y, (4.14)
where
_ T(Ap+k+1) 4b2(b+f)k (24p+2k+1)
O = om0 a2 (20 (B + ). (415)

So the Wigner distribution function of the semiconfined quantum harmonic oscillator model with position
dependent mass and frequency in the presence of the external homogeneous field takes a form

1
an(p, xX) = ﬁ(/ln +1e P x

n T(Ap+k+1) 2bp Antk+1/2

nt2k
Fo T LA 20) pysrer 2210 + ), (4.16)

or explicitly

n
1 [(b? — b —n + k)
o o _
W () = 5 (2% = 2b8y = 2n = 1)em2BrY D7 [(2bZ — 2b&, —2n+ k)
k=0

4b?(b+8&) b*=bo-n+k-1/2 2b2-2b&y—2n+2k—1
X [T] Ly ™" (2b(b + )] p2—pgy-—nsk-172(20(b ). (4.17)

Absence of the external field again slightly simplifies (4.17) due to that g = 0 (£, = 0):

N ITR2D? —2n+ k)

b2-n+k-1/2 )
L2222 (b + 6))p2—nik—1/2(2n(b + §)). (4.18)

n
1 r(b? —n+k
W (p, x) = —= (2b% — 2n — 1) 20@+9) Z T ( )
k=0

% [4b2(b+f)]

We obtained an exact expression for the Wigner distribution function of our model of the linear harmonic
oscillator with position dependent mass and frequency in the external homogeneous field.

5. LIMIT CASE a — o (or b > )

In this section, we will find the limit of the wave function (3.6) and the Wigner distribution function (4.6).
In doing so, we will proceed from asymptotic formulas valid for |x| << 1 and |z| — oo:

Vi+x = 1+%x—§x2, In(1+x) = ix—%xz,
[(z+1) =2z e?nz-2 (5.1)

as well as the limit formula for Laguerre polynomials [44]

( ) 12 (a +2ax) = —H (). (5.2)

5.1. Limit of wave functions. To calculate the limit of the wave function (3.6) at a — oo, first, we find the
asymptotics of each of the factors separately in (3.6).
a) In ¢ for the Gamma function we have
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T(24, + k + 2) = [(2b% — 2b&, — n) = ge"l,
= (2b% — 2b&y — n) In 2b2 + &2 — 2b2.

Hence,
: n/2
9 ~ ‘Fx/_(Zb 272 b’ %, (5.3)
¢
b)(1 +5)" = eanin(1) = oo g, = bg 162 — g5,
b 2
(5.4)
Substituting (5.3) and (5.4) into (3.6), we have for b —» o
4\/7\7(2) “Le+g,)? 2b%2-2b&y-2n-1
YI(x) = Tm e 2t pp2y /2L 0 (2b? + 2b&). (5.5)
Now to calculate the limit
-n/2 2_ —on—
» = Jim (2b%) ML TR (27 + 2b¢), 56)

we introduce the notation B, = 2b? — 2bé, — 2n — 1,a = 2b?, z = 2b? + 2b& and obtain the recurrent formula

for the Laguerre polynomials LZ“ (2).
Since for for the Laguerre polynomials L% (z) the recurrence relation is valid [42]

n+DLs @) —-Cn+a+1-—2)LE2)+(n+a)LS_1(2) =0, (5.7)
then, the recurrence relation for Li" (2) will have
(n+ DL () — @n+ By + 1= 2L (2) + (n + Py )L (2) = 0, (5.8)

We now prove by mathematical induction the following limit relation

= lim () /2 L2207 a +2a8)) = S5 H,(§+8,). (5.9)

a—>0

Proof. First we write explicitly the Laguerre and Hermite polynomials for the first few values n

1
Li(z)=1L{z)=1+a—2zL5(z) =§[(1+a—z)(3+a—z)—1—a],
Hy(z) = 1,H,(2) = 22, H,(z) = 4z% — 2. (5.10)

We will also need a recurrence relation for the Hermite polynomial
Hyi1(2) = 2zH,(2) — 2nH,_1(2). (5.11)

Using these expressions, we directly obtain that for n = 1 and n = 2 relation (5.9) is true:

z,= ;ggom) V2 50 (o 4 2ag,) = —V2(E4E,) = \/—H1(€+EO)
Z, = lim (@)™ mfo (@ +v2ag,) = (6+€,)" -2 = 1Hy(£+4¢,). (5.12)

Let us now prove that relation (5.9), which is valid in the cases n = 1 u n = 2, also performed for an arbitrary

n > 2. For this, we assume that relation (5.9) holds for the polynomials Lf[ff (z) and LP"“(Z) at some n. Then it

n+1
also holds for Li’;"f(z). Indeed, we multiply by a2 both sides of the recurrence relation for Laguerre

polynomials L1 (z) (5.8)
n+1 _ _ _
Znia = lima™ = L V2atom2n=3 (o 4 \2qE,) =
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- (n:;v):;;T [2(§+$0)Hn(§+80) — 2nH, 1 (§+&0)]. (5.13)

According to (5.11), the last expression is

(_1)n+1
Iy = (n_i_l)!—zmHn+1(€+€0)- (5.14)

This completes the proof.

5.2. Limit of the Wigner distribution function for the ground state.

To calculate this limit, we find the asymptotics of each of the factors in (4.10). We have

1 - L 2 -4y b2_152
) r(b*-bé-1/2) - \/ﬁ(b ) e 2, (5.15a)

b%-b&i-1/2

LAGAL) ~ (B ge-te-gs,
b)[ - ] = (n) e?s 2 , (5.15b)
1 Ao+1/2 5 . o,
C)]bz_bgo_l/z(Zn(b +f)) Eﬁ(g) eb " +bE—n" =855, (5.15¢)

Note that the asymptotic behavior of the Bessel function in (5.15c) was found using the asymptotic formula
(7.13, 8(14)) for J,(x), given in [42]

1
Jp(x) = WEXP (\/pz —x% — pArchg),p >x>0,p— oo, (5.16)

We emphasize that there is a typo in the formula (7.13,8(14)) in [42]: instead of Arsh§ should stand Arch g. We

took this correction into account in formula (4.16). To obtain (5.15c) we left in (5.16) the main terms in powers
b1

VpZ=xZ=b, PP =2 = Ay +1-2n%,
b €+s‘o+52—1—2772—f§

p
Arch? =1 (—)
rey=m n b 2b?

As a result of substituting asymptotics (5.15) into (3.21), we find that the limit of the Wigner distribution
function of the ground state coincides with formula (2.7) forn = 0, i.e.

lim W’ (p, x) = —e 71" =(+0)" = WHO(p, x). (5.17)

5.3. Limit of the Wigner distribution function for n excited state. To calculate the limit of W,?(p, x) itis
convenient to start from equality (4.6). Let's rewrite it in the form

w2 (p,x) = LiA"“(p — iban)LiA”H(p + iban)Qg(p, x), (5.18)

where

L ni@antDMAntD) —p (4b3)A"+1/2

g : Ap+1/2
05 (p,x) = G (1 4+ Jaas2(200 + ). (5.19)
As above, we find the asymptotics of each factor (5.19) as b — oo. We have

2
AT (A, +1) = VZm(b2)4n+1/2en, y, = —b? +5,

(24An+1) 1 ~ _1 2\—2Ap—n Y — 9h2 _ 22
b) I(2Ap+n+2) = T(2Ap+n+1) = 2bVw (2b%)~*n""e Y2 =2b $0» (5.20)
E An+1/2 - 62
9(1+5)" T =erys=bi-L -4,
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)A0+1/2

D ager2(2n+ ) == (1) ey, = b2+ b — 2 =5 (€ + &)

So for Q7 (p, x) we get the following asymptotics

1
Qf(p,x) = —nl (2b?) e 2EH" = n1 (27 WO (p, x), (5.21)
whose substitution into (4.18) gives

lim W, (p,x) = n! lim (@b L (p — ibd, )L (p + ibd, ) WSO (p, x). (5.22)

Sothatp + ibd, = a + \/ﬂ(f + éa,,), where @ = 2b?, according to (4.9) will have

lim (2b%) "Ly (p = ibd, )L™ (p + ib0,) =

— ﬁyn (§+§0 - %a,,) H, (§+§0 + %a,,). (5.23)

Taking into account (5.22) and (5.23) we find

1
Th2™n!

. i i —n2_ 2

lim Wi (p, %) = —— Hy (§480 = 59y ) Hy (6460 +350,) e 76407, (5.29)
i.e. at b — oo the Wigner function of the model of a linear harmonic oscillator with position dependent mass and
frequency in an external uniform field transforms into the Wigner function for a linear harmonic oscillator with
constant mass and frequency in an external uniform field.

In this work, we have found an exact expression for the Wigner function of a quantum linear harmonic
oscillator with position dependent mass and frequency in an external uniform field in the case of a semiconfined
quantum parabolic well. Although the wave function of the considered system is defined on the half-

line(- a; ), integration in the definition of the Wigner function is carried out in the finite region (- (x + a); x +

a).
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