MAGNETIZATION, MAGNETIC SUSCEPTIBILITY AND HYSTERESIS OF CoGaxFe2-xO4 (x=1.1;1.3) CRYSTALS
А.М. Abdullayev, А.I. Ahmadov, М.C. Nacafzade, I.N. Ibrahimov, M.K. Xudayarova
   download pdf   

ABSTRACT

Analysis of the temperature dependence of molar magnetic susceptibility showed that CoGaxFe2-xO4 (x=1.1;1.3) are ferrimagnets with Curie temperatures (TC) corresponding to (TC≈210K for x=1.11, and TC≈143K for x=1.3). The relationship between the saturation magnetization Ms and the number of Bohr magnetons nB for the CoGaxFe2-xO4 (x=1.1;1.3) molecule at a temperature of 10 K is given by: nB=Ms/(NA μB), where NA– Avogadro's constant, μB – Bohr magneton. Then we obtain the following values for the effective magnetic moment: for CoGa1.3Fe0.7O4 μeff=nB μB≈3.4μB, and for CoGa1.1Fe0.9O4 𝜇eff. = 𝑛B𝜇B ≈ 2.95𝜇B. A hysteresis loop has been discovered in the field dependence of the molar magnetization M(H) of CoGaxFe2-xO4 (x=1.1;1.3) materials at a temperature of T=10K. The parameters and shape of the magnetic hysteresis loop are characteristic of ferrites. The given samples have the following magnetic properties: for CoGa1.3Fe0.7O4, Ms=1.9∙104 emu/mol; Mr=1.28∙104 emu/mol; Hc=2500Oe, and for CoGa1.1Fe0.9O4, 𝑀𝑠 =1.65 ∙ 104 emu/mol; 𝑀r = 1.05 ∙ 104 emu/mol; 𝐻𝑐 = 2700Oe.

Keywords: Magnetization; CoGaxFe2-xO4; Coercivity; Curie temperature.
DOI:10.70784/azip.2.2025203

Received: 07.04.2025
Internet publishing: 28.04.2025    AJP Fizika A 2025 02 az p.03-06

AUTHORS & AFFILIATIONS

Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave. Baku, AZ 1073
E-mail: aqaadil@gmail.com

Graphics and Images

          

        Fig.1-2

[1]   J.Smit, Wijn H.P.J. Ferrites. Eindhoven: Philips Technical Library, 1959. 136–175 p.
[2]   C. Schmitz-Antoniak et al. Electric in-plane polarization in multiferroic CoFe2O4/BaTiO3 nanocomposite tuned by magnetic fields. Nat. Commun. Nature Publishing Group, 2013. Vol. 4, № May. P. 1–8.
[3]   Sharifi Dehsari H., Asadi K. Impact of Stoichiometry and Size on the Magnetic Properties of Cobalt Ferrite Nanoparticles. J. Phys. Chem. C. 2018. Vol. 122, № 51. P. 29106–29121.
[4]   E. Fantechi et al. Exploring the effect of co doping in fine maghemite nanoparticles. J. Phys. Chem. C. 2012. Vol. 116, № 14. P. 8261–8270.
[5]   G. Muscas et al. Evolution of the magnetic structure with chemical composition in spinel iron 138 oxide nanoparticles. Nanoscale. Royal Society of Chemistry, 2015. Vol. 7, № 32. P. 13576– 13585.
[6]   M.V. Limaye et al. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J. Phys. Chem. B. 2009. Vol. 113, № 27. P. 9070–9076.
[7]   M Hamedoun, R Masrour, O Mounkachi, H El Moussaoui, A Benyoussef and E K Hlil. Physica Scripta, Volume 88, Number 1, 2013, 015704 (10pp).
[8]   J.Chand, S. Verma, P. Kumar, M. Singh. Structural. Electric and Dielectric Properties of MgFe2O4 Ferrite Processed by Solid State Reaction Technique. Inter. J. of theor. Appl. Sci. 2011; 3(2): 8-9.
[9]   K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. World Scientific Publishing. 2008; 1-364.
[10]  S.K. Kulkarni. Nanotechnology: principles and practices. Capital publishing company. 2009.
[11]  Xiaohui Wang, Xiansong Liu, Xucai Kan, Shuangjiu Feng, Qingrong Lv & Yujie Yang. Characterization of microstructure and magnetic properties for Fe ion-doped CoGa2O4. Journal of Materials Science: Materials in Electronics volume 32, pages 24726–24735, 2021.
[12]  К.П. Белов. Магнитные превращения, Москва, ФМЛ, 1959, – 260 с.
[13]  К.П. Белов. Магнитотепловые явления в редкоземельных магнетиках, Москва, Наука, 1990. – 96 с.
[14]  Дж. Смарт. Эффективное поле в теории магнетизма, Издательство «Мир» Москва 1968, 271с.
[15]  С. Крупичка. Физика ферритов и родственных им магнитных окислов, том1, Издательство «Мир» Москва 1978, 353с.
[16]  Z.S. Teweldemedhin, R.L. Fuller, and M.Greenblatt. Magnetic Susceptibility Measurements of Solid Manganese Compounds with Evan’s Balance, Journal of Chemical Education, v.73, p.906, 1996.
[17]  M.B. Mohamed, M. Yehia. Cation distribution and magnetic properties of nanocrystalline gallium substituted cobalt ferrite. J. Alloys Compd. 2014. Vol. 615. P. 181–187. 195.
[18]  M. Sumalatha et al. Raman and in-field 57Fe Mössbauer study of cation distribution in Ga substituted cobalt ferrite (CoFe2-xGaxO4). J. Alloys Compd. 2020. Vol. 837. P. 155478.
[19]  А.М. Abdullayev, İ.N. Ibrahimov, R. Ə. Əlizadə, М.C. Nəcəfzadə, А.İ. Əhmədov. CoGa1.1Fe0.9O4 kristallarınnın maqnitlənməsi, maqnit həssalığı və histerezisi. AJP FİZİKA 2023 section C: Conference Türkiye, s. 63-66.