SIMULATION OF THE OPTICAL PROPERTIES OF THE ZnSe COMPOUND USING A FIRST-PRINCIPLES-BASED COMPUTATIONAL METHOD
V.N. Jafarova1, Kh.A. Hasanova2,1
   download pdf   

ABSTRACT

The optical properties of the hexagonal-structured ZnSe compound have been investigated based on first principles within the framework of Density Functional Theory using the Local Density Approximation (DFT-LDA) and the Hubbard U method. Calculations were carried out using the Atomistic ToolKit software package, and the electron-ion interactions were considered using the Fritz-Haber-Institute pseudopotentials. For the ZnSe crystal, key optical parameters such as complex dielectric function, refractive index, reflectivity, extinction coefficient, absorption coefficient, complex susceptibility, degree of polarization, and optical conductivity were determined for e∥c and e⊥c polarizations. The optical reflection spectra of the compound were analyzed in terms of absorption depths for these polarization directions. Additionally, the values of the optical parameters obtained for e∥c and e⊥c polarizations were compared, and it was determined that there is no significant optical anisotropy in the crystal.

Keywords: ZnSe, DFT optical properties, dielectric function, absorption, reflection, polarization, anisotropy
DOI:10.70784/azip.2.2025232

Received: 14.05.2025
Internet publishing: 20.05.2025    AJP Fizika A 2025 02 az p.32-36

AUTHORS & AFFILIATIONS

1. Azerbaijan State Oil and Industry University, 20 Azadlig ave. Baku, AZ 1010
2. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave. Baku, AZ 1073
E-mail: rasulova.khayala@mail.ru

Graphics and Images

                   

     Fig.1-2           Fig.3-4-5

[1]   N. Ahmed, M.A. Rafiq, S. Naseem. Structural and magnetic properties of CoFe₂O₄ nanoparticles. Materials Science-Poland, Vol. 35, pp. 479, 2017.
[2]   V.N. Cəfərova. Magnetic properties of substituted spinel ferrites. AJP Fizika, Vol. XXVIII, № 1, pp. 43, 2022.
[3]   S.K. Chang, M.C. Wang, T.S. Chin. Magnetic anisotropy in cobalt ferrite. Journal of Applied Physics, Vol. 62, pp. 4835, 1987.
[4]   W. Benstaali, F. Boukhari, S. Matar. Optical and structural study of ferrite thin films. Materials Science in Semiconductor Processing, Vol. 16, pp. 231, 2013.
[5]   P.V.B. Lakshmi, B. Ramesh, K.H. Rao. Influence of rare-earth substitution on cobalt ferrites. Crystal Research and Technology, Vol. 44, pp. 153, 2009.
[6]   S. Dai, Q. Wang, Y. Liu. Structural evolution and magnetism in doped ferrites. Results in Physics, Vol. 8, pp. 628–632, 2018.
[7]   M.S. Halati, A. Rezaee Yazdi, M. Houshmand. Surface analysis of ferrite nanopowders. Applied Surface Science, Vol. 566, pp. 150690, 2021.
[8]   M.F. Hasaneen, M.S. El Nahhas, A.A. Marzouk. Dielectric and electrical properties of ferrites – Materials Research Express, Vol. 7, pp. 016422, 2020.
[9]   P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Physical Review B, Vol. 136, pp. B864, 1964.
[10]  R.G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules – Oxford University Press, New York, Vol. IX, 333 pp., 1989.
[11]  F. Martin, S. Matthias. Numerical methods for atomic basis sets. Computer Physics Communications, Vol. 119, № 1, pp. 67, 1999.
[12]  H.J. Monkhorst, J.D. Pack. Special points for Brillouin-zone integrations. Physical Review B, Vol. 13, pp. 5188–5192, 1976.
[13]  V.N. Jafarova. First-principles investigation of Co-based ferrites. Journal of Modern Physics B, Vol. 36, № 24, pp. 2250156, 2022.
[14]  V.N. Cəfərova, N.T. Məmmədov, M.A. Musayev. Computational study of Ga-doped ferrites. AJP Fizika, Vol. XXVIII, № 3, pp. 46, 2022.
[15]  V.N. Cəfərova. Structural characteristics of substituted spinels. AMEA-nın Xəbərləri, Vol. XXVIII, № 5, pp. 107, 2022.
[16]  H. Mehnane, B. Abidri, N. Bouarissa. Optical characterization of cobalt ferrite thin films. Superlattices and Microstructures, Vol. 51, pp. 772, 2012.