ABSTRACT
The specific resistance (ρ), electrical conductivity (σ) and thermoelectric potential (S) were measured in the synthesized Cu4Se1.5Te0.5
crystal in the range of 293-950 K. It was found that the anomalies of the temperature dependence of the electrical parameters of the crystal from room temperature to 350 K,
small semiconductor and semimetal, increase rapidly up to 350 ̴ 540 K, reach a maximum at 540 K, and in the range of 540K-620K, the first structural phase transition occurs.
The specific resistance (ρ) decreases up to 620K-684K, while the electrical conductivity (σ) increases, and in the range of 684K-717K, the second structural phase transition
occurs, and in the range of 717K-800K it increases again, and after 800K, the semiconductor property manifests itself again. The value of the thermoelectric power (S)
decreases rapidly from 293 to 550K, remains unchanged from 550K to 800K, and a type change is observed after 800K.
Keywords: Electrical conductivity, thermoelectric power, phase transition, X-ray diffraction, resistivity.
DOI:10.70784/azip.2.2025237
Received: 21.05.2025
Internet publishing: 30.05.2025 AJP Fizika A 2025 02 az p.37-40
AUTHORS & AFFILIATIONS
1. Institute of Physics Ministry of Science and Education Republic of Azerbaijan, 131 H.Javid ave. Baku, AZ 1073, Azerbaijan
2. Ministry of Science and Education of Azerbaijan, Azerbaijan State Pedagogical University, 68 U. Hajibeyli, Baku, AZ-1000, Azerbaijan
3. Azerbaijan State Oil and Industry University, 34 Azadlig ave. Baku, AZ 1010, Azerbaijan
E-mail: nergiz_25@mail.ru
Graphics and Images
Fig.1-2-3-4
|
[1] N.A. Gasimova, R. Amiraslanov, Y.I. Aliyev, and G.G. Guseinov. AIP Conference Proceedings 1400, 476, 2011; doi: 10.1063/1.3663166.
[2] A.İ. Cabbarov, S.İ. İbrahimova, N.A. Əliyeva və b. Cu3SeTe birləşməsinin elektrik və termoelektrik xassələri . AJP Fizika, XXV Bakı: 2019, vol., № 2, s.25-27.
[3] T.A. Bither, C.T. Prewitt, J.L. Gilison at al. Solid State Communications. 4, 533, 1966. https://doi.org/10.1016/0038-1098(66)90419-4
[4] V.M. Glazov, A.S. Pashinkin and V.A. Fedorov. Inorg. Mater. 36, 641, 2000; https://doi.org/10.1007/BF02758413
[5] Ю.Г. Асадов, Ф.Ю. Асадов, А.Г. Бабаев. Влияние дефицита катионов на структуры и температурные области существования модификаций в кристаллах Cu2-xTe (x = 0,00; 0,05; 0,10; 0,15; 0,20; 0,25). Новости национальной академии наук Азербайджана. Серия физико- математических и технических наук. 2003, № 2, c. 87–93.
[6] Dandan Huang, Rumo Han, Yao Wang and Tianfan Ye. Journal of Alloys and Compounds. 855, 157373, 2021; https://doi.org/10.1016/j.jallcom.2020.157373.
[7] R. Blachnik, M. Lasocka and U. Walbrecht. J. Solid State Chem., 48, 431 (1983); https://doi.org/10.1016/0022-4596(83)90102-0
[8] А. Стародуб. Успехи химии, 68 (10), 883, 1999,
[9] Д. Воган, Дж. Крейг. Химия сульфидных минералов –Изд. «Мир» Москва 1981, 575с.
[10] М.С. Соминский. Полупроводники. Ленинград, Изд-во «Наука», 1967, 439 с.
[11] Практикум по полупроводникам и полупроводниковым приборам. Под редакцией К.В. Шалимовой. М., Изд-во «Высшая школа», 1967, с. 17, 464.
[12] Г.П. Cорокин, Ю.М. Папшев, П.Т. Оуш, Фотопроводимость Cu2S, Cu2Se и Cu2Te. Физика твердого тела. 1965, т. 7, № 7, c. 2244–2245.
|